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Introduction

• Question: How come measured degree of sorting so low if canonical models of inequality predicated on it?
▷ Examples: estimates in AKM (1999), CHK (2013) and similar

• Answer: Models of sorting with human capital acquisition and (symmetric) learning about productivity
▷ Naturally give rise to countervailing (compensating differential) forces
▷ Option value of HK and info acquisition attenuates impact of firm/worker/match effects on wages
▷ Idea: “Rosen meets sorting”

• Examples
▷ Bad jobs (low firm effect) can pay high wages and attract productive workers
▷ Good jobs at which a lot of HK/information can be accumulated can pay low wages

• Critical to understand the determinants of these models is being able to recover them
▷ Difficult: they are complex unobserved time-varying processes endogenous functions of primitives



Focus of the Analysis

• Consider general class of equilibrium models with learning, HK acquisition and rich heterogeneity

▷ Account for imperfect competition (Bertrand) among differentiated firms (robust to firm entry)
▷ Capture situations in which potential outcomes of interest are unobserved
▷ Allow for dynamic selection based on observables and unobservables

• Show they are identified from wage and job information (builds on Pastorino (2022))

• Revisit determinants of sorting



Data and Primitives of Interest

• Data: for T periods and a large sample of i.i.d. agents, the econometrician

▷ Observes wage, employing firm/job and initial human capital

▷ Does not observe skill type, ability, beliefs about ability, output (signal) or human capital investments

• Primitives: to be identified in order to perform any counterfactual of interest

▷ Skill type distribution

▷ Prior and signal distribution (learning process)

▷ Conditional firm/job assignment probabilities (CCPs)

▷ Expected wage, output and human capital process

▷ Discount factor, expected wage, output and human capital parameters



Key Challenges

• Dynamic equilibrium model of selection on observables and unobservables with two-sided heterogeneity

• Outcome equations (equilibrium wages and CCPs) are nonlinear in parameters and factors

• Agents learn from outcomes (signals) unobserved to the econometrician

• CCPs

▷ Are conditional on these unobserved signals

▷ The impact of signals on CCPs is mediated by wages in a nonlinear way

• Agents’ prior beliefs may be subjective i.e. may not coincide with true distribution of latent factors



Key Identification Results

• Relax linearity of outcome equations

• In addition to component densities, identify CCPs from wage distribution alone

▷ From weights of wage mixture distribution over firm/job/signal histories, skill types and initial HK

▷ Outcomes, signals, types and priors may be discrete or continuous

• From recovered CCPs and wage mixture densities, identify all other primitives

• Importantly: identify prior and signal distributions w/o parametric restrictions on learning process



Roadmap of Identification Argument

• Identify wage mixtures over all possible firm/job/signal histories, skill types and initial HK

• From wage mixture weights, identify skill type, initial prior and signal distributions as well as CCPs

▷ From signal distribution, identify belief process

▷ From initial prior and signal distributions, the learning process is pinned down

• From wage mixture densities, identify wage, output and HK processes

▷ Current version: output linear in HK and law of motion of HK unaffected by signals (can relax)

• From structural model, identify discount factor, wage, output and HK parameters



A Review of the Wage Equation

• Dynamic equilibrium model of labor market w/ N firms competing for workers over horizon of length T ≤ ∞

▷ Through simultaneous offer of jobs (occupations) and wages each period
▷ We focus on Markov perfect equilibria

• At time t the wage paid to a worker is

wt = y(si ,t ,g ,kg) + Ψ(si ,t , f ,kf ,g ,kg) + ϵi ,g ,kg ,t

▷ f is employing firm at job kf , g is second-best firm (offering second-highest PV of wages) at job kg

▷ si ,t := (i ,pt ,κt) is deterministic state
∗ i is skill type
∗ pt is belief that worker has high ability at beginning of t (high/low ability for expositional simplicity)
∗ κt is initial human capital (h1) and human capital investments up to t − 1

▷ y(si ,t ,g ,kg) is output at job kg of firm g and Ψ(si ,t , f ,kf ,g ,kg) is compensating differential
▷ ϵi ,g ,kg ,t captures productivity shocks and measurement errors



Wage Equation: Components and Interpretation

• Sum of three terms

▷ y(si ,t ,g ,kg): affine in si ,t (interactive fixed effect extension of AKM)

▷ Ψ(si ,t , f ,kf ,g ,kg): compensating differential that dampens the impact of fixed effects on wages

▷ ϵi ,g ,kg ,t : idiosyncratic factors (can use equilibrium to express kg as fct of kf )

• The second term explains why sorting is typically estimated to be low

▷ Captures expected PV difference in match surplus from working at employing firm vs. second-best firm

▷ This term is higher the higher the value of HK or info worker forgoes by choosing to work at f

▷ So can compensate for small y(si ,t ,g ,kg)



Useful Notation for Next Arguments

• At the end of time t worker’s signal is high or low: Rt ∈ {0,1} and R t := (R1,R2, . . . ,Rt)

▷ This performance signal is binary for simplicity, continuous signals can be easily handled

▷ Rt depends on skill type, ability, firm/job histories and human capital

• Lf ,kf ,t takes value 1 if f is employing firm at job kf and time t; zero otherwise

• Lg ,kg ,t takes value 1 if g is second-best firm at job kg and time t; zero otherwise

• Lt := (Lf ,kf ,t : f ∈ F ,kf ∈ Kf ), Lt,2 := (Lg ,kg ,t : g ∈ F ,kg ∈ Kg) and Lt := (L1,L2, . . . ,Lt)



Identification of Wage Mixture

• According to the model, (si ,t ,Lt,2) are functions of (Lt ,h1, i ,R t−1) so the wage mixture is

g(wt |Lt ,h1) = ∑
Rt−1∈{0,1}t−1

∫
i∈I

g(wt |Lt ,h1, i ,R t−1)q(i ,R t−1|Lt ,h1)di

• Assume

▷ ϵi ,Lt,2,t are i.i.d. with distribution conditional on (Lt ,h1, i ,R t−1) denoted by r(·|Lt ,h1, i ,R t−1)

▷ I is finite with known cardinality

▷ r(·|Lt ,h1, i ,R t−1) is mixture of Normals with unknown means/variances in compact set D(Lt ,h1, i ,R t−1)

• By Bruni and Koch (1985): {g(·|Lt ,h1, i ,R t−1),q(i ,R t−1|Lt ,h1)} are identified up to labelling wrto (i ,R t−1)

• Can accommodate continuous signals and/or skill types (no parametric restriction on components) details



Exchangeability of Mixture Components

• Pairs {g(·|Lt ,h1, i ,R t−1),q(i ,R t−1|Lt ,h1)} are equivalent across R t−1 with same no. of successes by job

• To handle such exchangeability

▷ Group realizedR t−1 into equivalence classes by job/success count (other suff. stat. in continuous case)

▷ Select one representative element from each equivalence class

▷ Proceed with dimension reduction of wage mixture before delving into its identification



Labelling Mixture Components

• Bruni and Koch (1985) allow us to identify pairs {g(·|Lt ,h1, i ,R t−1),q(i ,R t−1|Lt ,h1)}

• However, we are unable to label each pair with respect to (i ,R t−1)

• Labelling is crucial for identifying CCPs and learning process

▷ These objects are identified from mixture weights by applying law of total probability

▷ It requires us to “integrate over” the correct components (more on this later)

• We solve this issue by ordering component densities according to their means and/or variances



Identification of Skill Type Distribution

• Direct implication of the wage mixture identification

• Consider the wage mixture at t = 1

g(w1|L1,h1) =
∫

i∈I
g(w1|L1,h1, i)q(i |L1,h1)di

• From the mixture weights, we identify the skill type distribution q(·|L1,h1)



Identification of Signal Distribution

• Usually the signal distribution is unobserved to the econometrician: we maintain so

• Key idea: recover this distribution (also CCPs as shown next) from wage mixture weights

• Simple algebra gives

Pr(R t−1|Lt−1,h1, i) = ∑
Lt∈Lt

Pr(Lt |Lt−1,h1, i ,R t−1)Pr(R t−1|Lt−1,h1, i)

= ∑
Lt∈Lt

Pr(Lt ,h1, i ,R t−1)

Pr(i |Lt−1,h1)Pr(Lt−1,h1)

• Objects in last expression are identified from mixture weights (Pr(i |Lt−1,h1) from weights in t > 1) and data

• Thus, the performance distribution Pr(R t−1|Lt−1,h1, i) is identified



Identification of CCPs

• Pr(L1|h1, i) is directly identified from mixture weights in period 1

• In period t > 2 simple algebra gives

Pr(Lt |Lt−1,h1, i ,R t−1) =
Pr(Lt ,h1, i ,R t−1)

Pr(R t−1|Lt−1,h1, i)Pr(i |Lt−1,h1)Pr(Lt−1,h1)

• Objects on RHS are identified from mixture weights, signal distribution and data

• Thus, Pr(Lt |Lt−1,h1, i ,R t−1) is identified



Identification of Learning Process

• Workers can have either high or low ability θ ∈ {θ̄,θ} (straightforward to extend to continuous case)

• For t > 2 apply Bayes rule to get beliefs {pt} with pt := Pr(θ = θ̄|Lf ,kf ,t = 1,Lt−2,h1, i ,R t−1) or

pt =
[ αf ,kf pt−1

αf ,kf pt−1 + βk,f (1 − pt−1)

]Rt−1[ (1 − αf ,kf )pt−1

(1 − αf ,kf )pt−1 + (1 − βk,f )(1 − pt−1)

]1−Rt−1

• Key parameters governing learning process

▷ Prior p1(f ,kf , h̄, ι) := Pr(θ = θ̄|Lf ,kf ,1 = 1,h1 = h̄, i = ι)

▷ αf ,kf := Pr(Rt = 1|θ = θ,Lf ,kf ,t = 1)

▷ βf ,kf := Pr(Rt = 1|θ = θ,Lf ,kf ,t = 1)



Identification of Learning Process

• More on discrete example: Pr(R t |Lf ,kf ,1 = · · ·= Lf ,kf ,t = 1,h1 = h̄, i = ι) is 2-component Binomial mixture

Pr(R t |Lf ,kf ,1 = · · · = Lf ,kf ,t = 1,h1 = h̄, i = ι)

= α
∑t

j=1 Rj
f ,kf

(1 − αf ,kf )
(t−∑t

j=1 Rj )pt(f ,kf , h̄, ι) + β
∑t

j=1 Rj
f ,kf

(1 − βf ,kf )
(t−∑t

j=1 Rj )[1 − pt(f ,kf , h̄, ι)]

• LHS is identified from the identification of the performance distribution

• By Blischke (1964; 1978): mixture weights and probabilities are identified if # experiments ≥ 3

• Thus, we identify (αf ,kf , βf ,kf ) from Pr(R3|Lf ,kf ,1 = Lf ,kf ,2 = Lf ,kf ,3 = 1,h1 = h̄, i = ι)

• We obtain initial prior from Pr(R1 = 1|Lf ,kf ,1 = 1,h1 = h̄, i = ι) = αf ,kf p1(f ,kf , h̄, ι)+ βf ,kf [1− p1(f ,kf , h̄, ι)]

• Once signal distribution recovered, its parameters too provided signal distribution identifiable mixture of them



Identification of Wage, Output and HK Processes

• Expected wage y(si ,t ,g ,kg) + Ψ(si ,t , f ,kf ,g ,kg) is identified from mixture densities if shocks mean zero

• Expected output y(si ,t ,g ,kg) is identified from expected wages

▷ Under appropriate location normalizations

▷ By exploiting parametric form of y(·): it is an affine function of the state by construction

• HK process is identified from process of deterministic state and CCPs



Identification of Discount Factor

• Combine information on job choices (discrete controls) and wages (continuous controls)

• Rely on exchangeability of time-varying latent process (beliefs)

• Exchangeability implies the recursed-out component mean wage is eventually polynomial of low order in δ

▷ Past some period, the HK process dies out

▷ In short panels: past some period, HK is accumulated symmetrically across occupations



Identification of Wage, Output and HK Parameters

• We can write our wage equation at time t for worker n as

wn,t = αn,kg + ψg ,kg + s⊤n,tγg ,kg + Ψ(sn,t , f ,kf ,g ,kg) + ϵn,g ,kg ,t

• Compare with wage equation in AKM

wn,t = αn + φkf + x⊤
n,t β + ϵn,t

▷ Standard fixed effect formulation

▷ Sorting measured by Cov(αn, φkf )



Identification Strategy

• From identification perspective, three main differences wrto AKM wage equation

▷ Equation nonlinear in unobserved effects in ways not captured by interactive formulation

▷ Firm and worker fixed effects are job-specific

▷ Second-best firm and state are unobserved

• So AKM identification proof does not straightforwardly apply

• We show identification of wage parameters by combining

▷ AKM identification arguments

▷ Identification results from structural model

• The identification of the output and HK parameters follows from y(·)



Implications for Sorting

• Applying the usual variance decomposition arguments to our wage equation

Var(wn,t) = Cov(αn,kg ,wn,t)︸ ︷︷ ︸
person-job effect

+ Cov(ψg ,kg ,wn,t) + Cov(s⊤n,tγg ,kg ,wn,t)︸ ︷︷ ︸
static firm-job effect

+ Cov(Ψ(sn,t , f ,kf ,g ,kg),wn,t)︸ ︷︷ ︸
dynamic firm-job effect (compensating differential)

+Cov(ϵn,g ,kg ,t ,wn,t)

• We are investigating degree to which sorting occurs and extent to which is due to

▷ Static vs. dynamic firm-job effects using U.S. employer-employee data (Census LEHD)

▷ Key: common measures tend to over (under)-state sorting in short (long) run

• Next: examine impact of all these sources of sorting on dynamics of wage inequality in U.S.



Conclusion

• Examine general class of equilibrium models with learning, HK acquisition and rich heterogeneity

▷ Account for imperfect competition among differentiated firms (robust to firm entry)
▷ Capture situations in which potential outcomes of interest are unobserved
▷ Allow for dynamic selection based on observables and unobservables

• Establish identification of latent processes, CCPs and primitive parameters

▷ Based just on information on job choices and wages

• Help reconcile low estimates of sorting with sorting models for persistent wage inequality

▷ What the literature has missed: if labor markets are to any extent competitive
▷ Wages endogenously arbitrage differences in worker productivity across jobs and firms
▷ So wages imperfectly measure sorting (only in ≃ perfectly competitive models wages reflect productivity)

• Estimate degree of sorting and its evolution over time on Census LEHD data (in progress)



Identification of Wage Mixture with Continuous Types

• Suppose i is continuous

• Assume

▷ r(·|Lt ,h1, i ,R t−1) is Normal

▷ The set of means and variances of r(·|Lt ,h1, i ,R t−1) across i denoted by D(Lt ,h1,R t−1) is compact

• Then, the wage mixture is

g(wt |Lt ,h1) = ∑
Rt−1∈{0,1}t−1

Pr(R t−1|Lt ,h1)
∫

D(Lt ,h1,Rt−1)
g(wt |Lt ,h1, i ,R t−1;µ,σ2)dπ(µ,σ2)

▷ π is a probability measure over D(Lt ,h1,R t−1)

• By Bruni and Koch (1985): π and Pr(R t−1|Lt ,h1) are identified back


