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Abstract

We study partial identification of the preference parameters in the one-to-one matching model with
perfectly transferable utilities. We do so without imposing parametric distributional assumptions on
the unobserved heterogeneity and with data on one large market. We provide a tractable character-
isation of the identified set under various classes of nonparametric distributional assumptions on the
unobserved heterogeneity. Using our methodology, we re-examine some of the relevant questions in
the empirical literature on the marriage market, which have been previously studied under the Logit
assumption. Our results reveal that many findings in the aforementioned literature are primarily driven
by such parametric restrictions.
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1 Introduction

Matching markets are two-sided markets, where agents on each side have preferences over matching
with agents on the other side. For example, social interactions lead individuals to find marital
partners, production tasks are assigned to workers, and auctions sort buyers with sellers. While
the economic theory of matching models has been around for more than five decades, the literature
on empirical matching models is relatively recent (Chiappori and Salanié, 2016).

An important strand of this literature focuses on the one-to-one matching model, in which
every agent forms at most one match. Each possible match generates a surplus. In the framework
where utilities are perfectly transferable, agents can share the match surplus with their partners
without frictions. Since Becker (1973), the one-to-one matching model with perfectly transferable
utilities (hereafter, 1to1TU) has been extensively used in household economics to represent the
marriage market (Chiappori, 2017). In particular, researchers have exploited the 1to1TU model
to estimate the systematic part of the match surplus. Recovering the systematic match surplus is
useful, for example, to investigate sorting patterns and how they change over time, to learn about
the complementarities and substitutabilities of partner characteristics, to assess the efficiency
and welfare implications of the status-quo assignment, and to measure the impact of pre-marital
decisions on the sharing of the match surplus between spouses.1

Most of the papers using the 1to1TU model to estimate the systematic match surplus proceed
under strong parametric distributional restrictions on the agents’ unobserved heterogeneity. These
restrictions amount to imposing i.i.d. standard Extreme Value Type I taste shocks, independently
distributed from covariates. Along with data on one large market, these restrictions make the
1to1TU model just identified, leading to point identification of the systematic match surplus via
standard Logit formulas (Choo and Siow, 2006). The motivation for using the Logit 1to1TU
model is computational simplicity. However, this framework may lead to paradoxical conclusions
that run against economic sense. For example, it is well known that the one-sided Logit model is
inherently linked to the independence of irrelevant alternatives (IIA) axiom and severely restricts
cross-elasticities. The same holds in two-sided markets and causes unintuitive comparative static
predictions, as explained in Graham (2013a) and Galichon and Salanié (2019).

The fact that widespread empirical practices rest on the Logit 1to1TU model raises several
questions. When we have data on one large market, does the 1to1TU model retain any identifying
power on the systematic match surplus without restrictions on the taste shock distribution?
If not, is it still possible to recover some information on the systematic match surplus under
nonparametric distributional assumptions on the unobserved heterogeneity? How are the answers
to relevant policy questions driven by the Logit assumption? The contribution of our paper is to
address these issues. By doing so, we also offer methodological guidance for researchers who wish
to consider more robust alternatives to (or do sensitivity checks of) the Logit 1to1TU model.

1The 1to1TUmodel has also been used to study matching of CEOs to firms (Chen, 2017), matching of academics
to offices (Baccara, et al., 2012), merging of banks (Akkus, Cookson, and Hortaçsu, 2016), formation of research
alliances (Mindruda, Moeen, and Agarwal, 2016), and collaboration between academics and firms (Mindruda, 2013;
Banal-Estañol, Macho-Stadler, and Pérez-Castrillo, 2018).

2



We start our analysis by observing that, if the taste shock distribution is not assumed to be
fully known by the researcher, then the 1to1TU model is under-identified with data on one large
market (Galichon and Salanie, 2021; hereafter, GS). In the absence of any restrictions on the taste
shock distribution, we show that the under-identification issue is severe, as the 1to1TU model is
completely uninformative about the systematic match surplus. Formally, this means that, for
every possible value of the systematic match surplus, there exists a taste shock distribution that
rationalises the data when combined with that value of the systematic match surplus.

We proceed by investigating whether the 1to1TU model retains some information on the sys-
tematic match surplus under various classes of nonparametric distributional assumptions on the
unobserved heterogeneity (for instance, independence of taste shocks from covariates, quantile re-
strictions, symmetry restrictions, and identically distributed marginals). Answering this question
poses the challenge of tractably characterising the identified set of the systematic match surplus.
We do that by extending the linear programming computational approach of Torgovitsky (2019)
to our framework. For a given value of the systematic match surplus, this method transforms a
search over the space of infinite-dimensional cumulative distribution functions into a search over
a space of cumulative distribution functions evaluated at a finite number of points. The latter
search can be written as a simple linear program. Further, note that the analyst would need to
solve the linear program for every admissible value of the systematic match surplus. Usually, this
is carried out in the partial identification literature by generating a grid of points to approximate
the parameter space and then repeating the exercise of interest for each grid point. However, the
difficulty of doing so increases with the size of the grid, which, in the 1to1TU model, increases
exponentially with the cardinality of the covariates’ support, leading quickly to a computational
bottleneck. We alleviate this issue by showing that the parameter space can be ex-ante partitioned
into a finite number of subsets such that, for each subset, every value belonging to that subset
gives rise to the same linear program. Therefore, the analyst has to solve the linear program only
once for each subset. These results are new and represent the methodological contribution of the
paper.

We use our methodology to re-examine some of the relevant questions in the empirical literature
on the marriage market that have been previously answered by relying on the Logit 1to1TU model.
A key question that stands out in this literature is whether educational sorting (i.e., the tendency
of agents to marry someone with similar or very different education levels) has changed over time.
Answering this question is important because educational sorting may have a crucial impact on
inequality by determining family formation and intergenerational transmission of human capital
(Kremer, 1997; Fernández and Rogerson, 2001; Fernández, Guner, and Knowles, 2005; Heckman
and Mosso, 2014; Dupuy and Weber, 2019; Eika, Mogstad, and Zafar, 2019; Chiappori, et al.,
2020; Ciscato and Weber, 2020). The literature proposes two approaches to measure changes in
educational sorting. The first amounts to using indices of sorting based on comparing the empirical
match probabilities to a counterfactual world where matching happens randomly (Fernández and
Rogerson, 2001; Greenwood, Guner, and Kocharkov, 2003; Liu and Lu, 2006; Greenwood, et al.,
2014; Abbott, et al., 2019; Eika, Mogstad, and Zafar, 2019; Shen, 2019). The second consists of
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using a structural model of the marriage market in order to estimate individual preferences and
analyse how they evolve over time. The second approach has been implemented by Siow (2015)
and Chiappori, Salanié, and Weiss (2017) (hereafter, CSW), based on the Logit 1to1TU model.

Both approaches suggest that, on average, positive educational sorting has increased in the U.S.
in the past decades. However, there is some debate around this trend when we look closer at each
education category. For instance, Eika, Mogstad, and Zafar (2019) find that positive educational
sorting has declined among the highly educated and increased among the less educated. Instead,
CSW find that positive educational sorting has increased particularly among the highly educated.2

Using data from the American Community Survey between the years 1940 and 1967 as in CSW, we
exploit our methodology to assess whether the conclusions achieved via the structural approach
are robust to the dropping of the Logit assumption. Under various classes of nonparametric
distributional assumptions, we find that the 1to1TU model is uninformative about the presence
and trend of positive educational sorting among the highly educated. We find the presence of
positive educational sorting among the less educated, although the model remains ambiguous
about its evolution across cohorts. Overall, our results suggest that the previous findings on the
increase in positive educational sorting based on the Logit 1to1TU model are, in fact, driven by
the Logit assumption.

Lastly, we use our methodology to study the evolution of marital returns to education. As
discussed by Chiappori, Iyigun, and Weiss (2009) and CSW, the increase in educational sorting
makes a higher stock of human capital more valuable in the marriage market. Consequently,
they predict an increase in the expected maximum payoff an agent can receive in the marriage
market due to achieving a college degree (“marital college premium”), especially among women.
Their empirical findings corroborate such a prediction for the U.S., based on the Logit 1to1TU
model. Without imposing parametric distributional assumptions, we find that the 1to1TU model
is inconclusive about the evolution of marital college premium over time. Further, it is particularly
uninformative about the women’s side, indicating that any evidence on the increase in marital
college premium from the Logit 1to1TU model is a consequence of the arbitrary parametric
restrictions.

In what follows, Section 2 summarises the related literature, Section 3 presents the model,
Section 4 discusses identification, Section 5 illustrates the empirical applications, and Section 6
concludes.

2 Literature review

The Logit 1to1TU model was introduced by Choo and Siow (2006) and since then has become
popular in empirical research on the marriage market. Several papers use it to learn whether
matching preferences are positive assortative by age, education, geographical location, etc. (Choo

2See also Chiappori, Costa-Dias, and Meghir (2020) and Chiappori, Costa-Dias, and Meghir (2021) for similar
conclusions.
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and Siow, 2006; Botticini and Siow, 2011; Bruze, Svarer, and Weiss, 2015; Choo, 2015;3 Siow,
2015; Galichon, Kominers, and Weber, 20194). Other papers use it to assess which of the partner
characteristics are complements/substitutes in the production of the systematic match surplus and
their relative strengths (Dupuy and Galichon, 2014;5 Ciscato, Galichon, Goussé, 2020). The Logit
1to1TU model has been frequently used to investigate the evolution of the link between education
levels and marriage market outcomes over time. In particular, the literature has studied questions
like how educational sorting and the marital college premium have changed over time (Chiappori,
Iyigun, and Weiss, 2009; Siow, 2015; CSW; Chiappori, Costa-Dias, and Meghir, 2020; Chiappori,
et al., 2020). Other papers adopt the Logit 1to1TU model to measure the effect on marital choices
of exogenous events that change the distribution of individual characteristics on each side of the
market, such as the famine in China between 1958 and 1961 (Brandt, Siow, and Carl, 2016).

The Logit 1to1TU model is often incorporated into bigger structural models. Examples of
these include collective household models with marriage and labour supply (Choo and Seitz,
2013); life cycle models of education, marriage, labour supply, and consumption (Chiappori,
Costa-Dias, and Meghir, 2018); collective household models with marriage, labour supply, home
production choices, and joint taxation (Gayle and Shephard, 20196); collective household models
with marriage, fertility decisions, and child socialisation choices (Bisin and Tura, 2020). Mourifié
and Siow (2021) extend the Logit 1to1TU model to allow for peer effects and cohabitation.

GS investigates the identification of the 1to1TU model when one dispenses with the Logit
assumption. Under the assumption that the taste shock distribution is fully known by the analyst,
they show that the 1to1TU model is just identified (and, thus, the systematic match surplus is
point identified) with data on one large market. They also provide closed-form expressions of the
systematic match surplus for some parametric distributional families.

The literature has explored two ways to introduce unknown parameters in the taste shock dis-
tribution while maintaining point identification. The first approach exploits variations in matching
patterns across many i.i.d. markets (Fox, 2010; Fox, 2018; Fox, Yang, and Hsu, 2018; Sinha, 2018),
as in the empirical IO tradition. With data on many i.i.d. markets, one can proceed without
parametric restrictions on the taste shock distribution. However, in most datasets, it is unclear as
to what truly defines i.i.d. markets. For instance, the majority of the empirical applications of this
approach assume that consecutive years represent i.i.d. markets, which can be often hard to justify
(Baccara, et al., 2012; Mindruda, 2013; Akkus, Cookson, and Hortaçsu, 2016; Mindruda, Moeen,
and Agarwal, 2016; Chen, 2017; Banal-Estañol, Macho-Stadler, and Pérez-Castrillo, 2018). The
second approach exploits variations of matching patterns across a few large cohorts which feature
different distributions of covariates, independent matching processes, identical systematic match
surplus up to some drifts or linear/quadratic trends, and identical taste shock distributions. This

3Bruze, Svarer, and Weiss (2015) and Choo (2015) incorporate dynamic aspects into the framework of Choo
and Siow (2006).

4Galichon, Kominers, and Weber (2019) extend the framework of Choo and Siow (2006) to imperfectly trans-
ferable utilities.

5Dupuy and Galichon (2014) extend the framework of Choo and Siow (2006) to continuous covariates.
6Gayle and Shephard (2019) allow for imperfectly transferable utilities.
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approach is implemented by CSW to introduce gender heteroskedasticity in the Extreme Value
Type I distribution.

Recent advances in the partial identification literature have pointed out an alternative route to
avoid parametric assumptions on the taste shock distribution, without adding any further struc-
ture on the systematic match surplus, and while remaining within a one large market framework.
In particular, Graham (2011; 2013b) shows that if the taste shocks are i.i.d., then the signs of some
complementarities between the spouses’ observed characteristics are identified. Fox (2018) bounds
the systematic match surplus under the assumption that the taste shocks are exchangeable across
the observed characteristics of the potential partners. Our paper contributes to this strand of
the literature by constructing the identified set of the systematic match surplus without requiring
the taste shocks to be i.i.d. or exchangeable, which can both be strong assumptions. Further,
our paper showcases the usefulness of partial identification approaches for formally understanding
empirical results that might otherwise be accepted less critically.

3 The model

This section describes the 1to1TU model that has been previously studied in Choo and Siow
(2006) and GS. The model relies on four main assumptions that are standard in the current
empirical practice. In what follows, we refer to agents on one side of the market as men and to
agents on the other side of the market as women.

Assumption 1. (One large market) There is a two-sided market. One side is populated by
an (uncountably) infinite set of men, I, with measure dµ̃I . The other side is populated by an
(uncountably) infinite set of women, J , with measure dµ̃J . The two sides are stochastically
independent. �

Assumption 2. (Finite number of observed types) Each man i ∈ I is characterised by a type,
Xi, with finite support, X . The mass of men of type x ∈ X is denoted by mx. Each woman
j ∈ J is characterised by a type, Yj, with finite support, Y . The mass of women of type y ∈ Y
is denoted by wy. Without loss of generality, we normalise the total mass of agents to 1, i.e.,∑
x∈X mx + ∑

y∈Y wy = 1. The realisations of Xi and Yj are observed by the researcher and all
agents. We define the sets of partner types that are available to men and women by Y0 ≡ Y ∪{0}
and X0 ≡ X ∪ {0}, respectively, where “0” represents the option not to match. �

Assumption 3. (Taste shocks) Each man i ∈ I is endowed with a |Y0|×1 vector of taste shocks,
εi ≡ (εiy : y ∈ Y0), where |Y0| denotes the cardinality of Y0 and εiy is the idiosyncratic preference
of man i for marrying a woman of type y ∈ Y0. Conditional on Xi = x and for each x ∈ X , εi has
cumulative distribution function (hereafter, CDF) Fx. Fx is absolutely continuous with respect
to the Lebesgue measure and has support in R|Y0|. Each woman j ∈ J is endowed with a |X0|× 1
vector of taste shocks, ηj ≡ (ηxj : x ∈ X0), where ηxj is the idiosyncratic preference of woman j
for marrying a man of type x ∈ X0. Conditional on Yj = y and for each y ∈ Y , ηj has CDF Gy.
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Gy is absolutely continuous with respect to the Lebesgue measure and has support in R|X0|. The
realisations of εi and ηj are observed by all agents but are not observed by the researcher. �

Assumption 4. (Separability) A match between man i ∈ I of type x ∈ X and woman j ∈ J of
type y ∈ Y generates a match surplus defined as

Φ̃ij ≡ Φxy + εiy + ηxj,

where Φ ≡ (Φxy : (x, y) ∈ X ×Y) is the systematic match surplus. The payoff of man i ∈ I from
remaining unmatched is

Φ̃i0 ≡ εi0.

The payoff of woman j ∈ J from remaining unmatched is

Φ̃0j ≡ η0j.

�

Assumption 1 outlines the one large market framework. The restriction on the stochastic
independence of the two sides of the market is not crucial for our results and can be relaxed.
Assumption 2 requires each agent to belong to one type. There is a finite number of types, which
is defined by the Cartesian product of the individual characteristics observed by the researcher.
Assumption 3 requires each agent to have idiosyncratic marital preferences over the types of the
potential partners and not over their identities. It implies that women (men) of the same type
are perfect substitutes for a man (woman). Assumption 4 imposes that the match surplus is
the sum of two components. One is the systematic match surplus, that is determined by the
types of potential partners. The other is the sum of the taste shocks of the potential partners.
In particular, the latent heterogeneity entering the match surplus equation does not consist of
an ij-indexed term. Instead, it is modelled through the sum of two terms, εiy + ηxj, each of
which only depends on the type of the potential partner. Assumption 4 is typically referred
to as “separability” (Chiappori, 2017). Lastly, observe that the systematic match surplus from
remaining single is normalised to zero. This location normalisation is standard in the literature
and imposed, for instance, also by GS and CSW.

A matching consists of

(i) A measure dµ̃ on the set I × J , such that the marginal of dµ̃ over I (J ) is dµ̃I (dµ̃J ).

(ii) A set of payoffs, {Ũi}i∈I and {Ṽj}j∈J , such that

Ũi + Ṽj = Φ̃ij ∀(i, j) ∈ supp(dµ̃).

(Chiappori, McCann, and Nesheim, 2010; Chiappori, McCann, and Pass, 2020). That is, a
matching consists of a match assignment and a match surplus sharing rule. A match assignment is
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a description of who is matched with whom. A match surplus sharing rule tells us how the match
surplus is divided between spouses. This division of the match surplus relies on endogenously
determined transfers, ensuring that every agent maximises their utility and the market clears.

A matching, dµ̃, {Ũi}i∈I , {Ṽj}j∈J , is stable when no agent has an incentive to change his
partner, i.e.,

Ũi ≥ Φ̃i0 ∀i ∈ I,

Ṽj ≥ Φ̃0j ∀j ∈ J ,

Ũi + Ṽj ≥ Φ̃ij ∀(i, j) ∈ I × J .

The first two sets of inequalities imply that married agents would not prefer being single. The
last set of inequalities states that no man or woman would get a strictly higher match surplus by
matching together than what they get under the match assignment, dµ̃. It can be shown that
a stable matching exists under mild continuity assumptions (Villani, 2009). Moreover, in the
limit of continuous and atomless populations, the stable matching is generically unique (Gretsky,
Ostroy and Zame, 1992). Importantly for the identification analysis, the resulting equilibrium
mass of couples where the man is of type x and the woman is of type y is unique for every (x, y).
In what follows, we denote this equilibrium mass of couples by

µxy for each (x, y) ∈ Z ≡ X0 × Y0 \ {0, 0}.

4 Identification

4.1 Data and parameters of interest

For identification, we assume that the analyst knows {µxy}(x,y)∈Z , {mx}x∈X , and {wy}y∈Y . For
estimation, we replace {µxy}(x,y)∈Z , {mx}x∈X , and {wy}y∈Y with consistent sample analogues,
resulting from sampling at random from the market at the individual level or at the household
level. Define

py|x ≡
µxy
mx

and px|y ≡
µxy
wy

,

as the equilibrium probability of marrying a woman of type y ∈ Y0 conditional on being a man
of type x ∈ X , and the equilibrium probability of marrying a man of type x ∈ X0 conditional on
being a woman of type y ∈ Y , respectively. Lastly, let

px ≡
mx∑
x∈X mx

and py ≡
wy∑
y∈Y wy

,

be the proportion of men of type x ∈ X and the proportion of women of type y ∈ Y , respectively.
Our primary interest lies in recovering the systematic match surplus, Φ. In fact, (partially)

identifying Φ allows us to answer many important questions considered in the marriage market
literature. In particular, Φ can be used to learn whether agents tend to match with similar
people, i.e., whether there is positive assortativeness. Investigating positive assortativeness and its
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evolution over time has been a focus of empirical research since Becker (1973) because it is crucial
to understand the sources of inequality in intergenerational outcomes. For instance, if parents’
education level affects their children’s school attainment and marriage is positive assortative by
education, then inequality in the next generation may be higher. Formally, let X = Y ≡ {1, ..., r}
collect r education levels, ordered from lowest to highest. For any x, x̃ ∈ X with x > x̃, consider
the cross-difference operator,

Dxx,x̃x̃(Φ) ≡ Φxx + Φx̃x̃ − Φxx̃ − Φx̃x. (1)

Dxx,x̃x̃(Φ) measures how the incremental (dis)value of marrying a more educated man evolves as
the education of the woman increases. Hence, one can evaluate changes in positive educational
sorting across markets (for instance, across cohorts) by estimating the supermodular core of Φ,

D(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ X , x > x̃),

within each market. As per Definition 1 in CSW, if every component of the vector D(Φ) is positive
within a given market, then that market exhibits positive educational sorting. Further, if every
component of D(Φ) increases across markets, then positive educational sorting increases across
markets. The definition can be restricted to a subset of education categories. We can say that
there is positive educational sorting among more educated people if each component of the vector

D`(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ {`, `+ 1, ..., r}, x > x̃),

is positive, where ` is large enough. Similarly, there is positive educational sorting among less
educated people if each component of the vector

D`(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ {1, ..., `}, x > x̃),

is positive, where ` is low enough. We can also say that positive educational sorting increases
across markets among more (less) educated people if every component of D`(Φ) increases across
markets.7

In addition to recovering Φ, our methodology permits the analyst to (partially) identify how
Φ is shared between spouses and hence assess the impact of pre-marital decisions on marriage
market outcomes. In particular, let Uxy be the part of Φxy that is gained by a man of type x ∈ X
when matching with a woman of type y ∈ Y . Analogously, let Vxy be the part of Φxy that is
gained by a woman of type y ∈ Y when matching with a man of type x ∈ X . Define Ūx as the

7In settings with multidimensional covariates, the cross-difference operator defined in (1) can be used to learn
which of the spouses’ observed characteristics are complements or substitutes in the production of the systematic
match surplus and, in turn, discover the key drivers of the gains to matching. See, for instance, Fox (2010) and
Graham (2011; 2013b).
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expected payoff that a man of type x ∈ X gets when marrying,

Ūx ≡ EFx(max
y∈Y0

Uxy + εiy|Xi = x).

For any x̃ ∈ X with x̃ < x, the difference ∆xx̃(U) ≡ Ūx − Ūx̃ denotes the gain in expected
utility from reaching education level x instead of x̃. Therefore, it represents the marital education
premium. When x = r, a college degree, and x̃ = r − 1, such a difference is called the marital
college premium. These quantities have received particular attention because they capture the
value of human capital on the marriage market (Chiappori, Iyigun, and Weiss, 2009; CSW). As
shown in GS, the marital education premium is equal to

∆xx̃(U) =
∑
y∈Y0

py|xUxy −
∑
y∈Y0

py|x̃Ux̃y + EFx(εiy∗i |Xi = x)− EFx̃(εiỹ∗i |Xi = x̃), (2)

where y∗i ∈ Y0 is the optimal choice of man i of type x and ỹ∗i ∈ Y0 is the optimal choice of man i
of type x̃. Note from (2) that computing (bounds for) ∆xx̃(U) requires the specification of (finite
bounds for) EFx(εiy∗i |Xi = x) − EFx̃(εiỹ∗i |Xi = x̃). The latter are typically not obtained within
a nonparametric framework like ours without further assumptions. Nevertheless, we will provide
bounds for the difference

Cxx̃(U) ≡
∑
y∈Y0

py|xUxy −
∑
y∈Y0

py|x̃Ux̃y,

which represents the change in the weighted average systematic payoff due to reaching education
level x instead of x̃. Such bounds will help us make certain conclusions regarding ∆xx̃(U). In
fact, we will see that in all the empirical cases of interest, the estimates of

C(U) ≡ (Cxx̃(U) : x, x̃ ∈ X , x > x̃) and C(V ) ≡ (Cyỹ(V ) : y, ỹ ∈ Y , y > ỹ),

are unbounded above and below. By (2), this implies that the marital education premia are
unbounded as well, and therefore, their evolution over time cannot be inferred.8

4.2 Two multinomial choice models

Based on the separability restriction (Assumption 4), Proposition 1 of GS provides a key result
for our identification analysis.9 This result states that, given the primitives Φ, {px}x∈X , {py}y∈Y ,
{Fx}x∈X , {Gy}y∈Y generating the stable matching dµ̃, {Ũi}i∈I , {Ṽj}j∈J , there exist vectors

U ≡ (Uxy : (x, y) ∈ X × Y0) ∈ R|X×Y0| and V ≡ (Vxy : (x, y) ∈ X0 × Y) ∈ R|X0×Y|,

8Note that imposing EFx(εiy|Xi = x) < +∞ and EFx̃(εiy|Xi = x̃) < +∞ for each y ∈ Y0 is necessary to ensure
finiteness of EFx(εiy∗

i
|Xi = x) and EFx̃(εiỹ∗

i
|Xi = x̃) in (2). In our framework, we do not consider such a class of

nonparametric assumptions on {Fx}x∈X . This is without loss of generality. In fact, as suggested by Example 2 in
Torgovitsky (2019), requiring EFx

(εiy|Xi = x) to be equal to some finite number for each (x, y) ∈ X ×Y0 does not
place any restrictions on the set of underlying distributions that determines the identified set for U , thus leaving
the bounds for C(U) unchanged.

9This result also appears in previous working paper versions of GS, in Chiappori, et al. (2008), and in CSW.
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such that

Ũi = max
y∈Y0

(Uxy + εiy) ∀i ∈ I of type x ∈ X , ∀x ∈ X , (3)

Ṽj = max
x∈X0

(Vxy + ηxj) ∀j ∈ J of type y ∈ Y , ∀y ∈ Y , (4)

Uxy + Vxy = Φxy, Ux0 = 0, V0y = 0 ∀(x, y) ∈ X × Y . (5)

Proposition 1 of GS allows us to rewrite the framework of Section 3 as two separate one-sided
multinomial choice models linked by market-clearing transfers that are implicitly embedded into
the vectors U and V . This alternative representation of the problem is useful as it immediately
suggests a way to investigate the identification of Φ: the researcher can study separate identifica-
tion of U and V from (3) and (4) using various restrictions on the unobserved heterogeneity, and
then obtain identification results for Φ through (5).10

Based on Proposition 1, Proposition 2 of GS shows that if {Fx}x∈X and {Gy}y∈Y are fully
known by the analyst, then the 1to1TU model is just identified and, thus, Φ is point identi-
fied. Note that fully knowing {Fx}x∈X and {Gy}y∈Y requires either such conditional CDFs to be
parameter-free, or the analyst to fix the value of each parameter governing them. In particular,
a widespread practice in the empirical literature amounts to assuming that the taste shocks are
i.i.d. standard Extreme Value Type I, independently distributed from types, so that Φ can be
recovered via standard Logit arguments applied to each side of the market (Choo and Siow, 2006).

Unfortunately, the Logit 1to1TU model suffers from the same limitations of the one-sided
Logit framework. It exhibits IIA which has counterintuitive predictions by implying proportional
substitution across types. This is illustrated by Galichon and Salanié (2019) with an example
that resembles the blue-bus/red-bus example of McFadden (1974).11 While most of the applied
literature on one-sided markets has replaced the Logit assumption with the Generalised Extreme
Value (GEV) framework, such a transition is yet to occur in the two-sided literature. This is
because, due to the just identification result mentioned above, it would be necessary to arbitrar-
ily specify the value of each parameter governing the GEV distribution, at the risk of incurring
serious misspecification. There are two possible ways to solve this impasse with data on one large
market: the researcher could either place assumptions on Φ (for instance, by restricting comple-
mentarities/substitutabilities among observed characteristics) so as to get degrees of freedom for
estimating the GEV parameters, or adopt a partial identification perspective. The first approach
is rare in the marriage market literature because most of the empirical studies consider marital
sorting on a single dimension (one attribute at a time). In this paper, we explore the second
approach and construct bounds for Φ. In doing so, we do not restrict the distribution of the taste
shocks to belong to any specific parametric family.

10The restrictions Ux0 = V0y = 0 in (5) come from the fact that the systematic match surplus from remaining
single is normalised to zero in Assumption 4.

11See also Graham (2013a) for another example on violation of IIA.
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4.3 The extent of under-identification

As shown by GS, if {Fx}x∈X and {Gy}y∈Y are not assumed to be fully known by the analyst,
then the 1to1TU model is under-identified. As a first step, this section investigates the extent
of under-identification by answering the following question: does the 1to1TU model retain some
identifying power on Φ without imposing any restrictions on {Fx}x∈X and {Gy}y∈Y? Lemma 1
below gives a negative answer.

Let U , V , and Θ denote the parameter spaces of U , V , and Φ, respectively, i.e.,

U ≡ {U ∈ R|X×Y0| : Ux0 = 0 ∀x ∈ X},

V ≡ {V ∈ R|X0×Y| : V0y = 0 ∀y ∈ Y},

Θ ≡ R|X×Y|.

Further, let F and G be the function spaces of all admissible taste shock distributions, {Fx}x∈X
and {Gy}y∈Y , respectively.12 Lastly, for any y ∈ Y0, U ∈ U , and {Fx}x∈X ∈ F , let κ(U, Fx, y) be
the model-implied probability of marrying a woman of type y ∈ Y0 conditional on being a man
of type x ∈ X , i.e.,

κ(U, Fx, y) ≡ λFx({(ey : y ∈ Y0) ∈ R|Y0| : Uxy + ey ≥ Uxỹ + eỹ ∀ỹ ∈ Y0 \ {y}}),

where λFx is the probability measure associated with Fx. Similarly, for any x ∈ X0, V ∈ V , and
{Gy}y∈Y ∈ G, let κ(V,Gy, x) be the model-implied probability of marrying a man of type x ∈ X0

conditional on being a woman of type y ∈ Y , i.e.,

κ(V,Gy, x) ≡ λGy({(ex : x ∈ X0) ∈ R|X0| : Vxy + ex ≥ Vx̃y + ex̃ ∀x̃ ∈ X0 \ {x}}),

where λGy is the probability measure associated with Gy.

Lemma 1. (Under-identification) For every data, {py|x}(x,y)∈X×Y0 and {px|y}(x,y)∈X0×Y , and sys-
tematic match surplus, Φ ∈ Θ, there exist (U, V ) ∈ U × V , {Fx}x∈X ∈ F , and {Gy}y∈Y ∈ G such
that

py|x = κ(U, Fx, y) ∀(x, y) ∈ X × Y0, (6)

px|y = κ(V,Gy, x) ∀(x, y) ∈ X0 × Y , (7)

Uxy + Vxy = Φxy ∀(x, y) ∈ X × Y . (8)

�

Lemma 1 is a straightforward application of Theorem 1 of Haile, Hortaçsu, and Kosenok (2008)
to our two-sided setting. It shows that in the absence of restrictions on {Fx}x∈X and {Gy}y∈Y ,

12Note that one element of F is a family of |X | conditional CDFs, {Fx}x∈X . Similarly, one element of G is a
family of |Y| conditional CDFs, {Gy}y∈Y .
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the 1to1TU model leads to uninformative bounds on Φ. Therefore, one needs to impose at least
some distributional assumptions on the unobserved heterogeneity to get information on Φ.

4.4 Adding distributional assumptions on unobserved heterogeneity

In this section, we ask ourselves whether the 1to1TU model retains some identifying power on Φ
under various classes of nonparametric distributional assumptions on the unobserved heterogene-
ity, so as to still be able to address relevant policy matters while maintaining a certain degree of
robustness. To answer this question, we adopt a computational approach. In particular, we start
from observing that if {Fx}x∈X and {Gy}y∈Y are not assumed to be fully known by the analyst,
then the 1to1TU model is under-identified, leading to partial identification of Φ. Hence, we pro-
vide a methodology to construct the identified set of Φ under various classes of nonparametric
distributional assumptions on the unobserved heterogeneity.

The identified set of Φ (hereafter, Θ∗) is the set of values of Φ such that there exists U ,
V , {Fx}x∈X , and {Gy}y∈Y that satisfy (6)-(8). By Proposition 1 of GS, we can construct Θ∗

by separately focusing on each side of the market. First, we construct the identified set of U
(hereafter, U∗), i.e., the set of values of U such that there exists {Fx}x∈X that satisfies (6). Then,
we construct the identified set of V (hereafter, V∗), i.e., the set of values of V such that there
exists {Gy}y∈Y that satisfies (7). Finally, we obtain Θ∗ from (8). In what follows, we explain the
construction of U∗. The construction of V∗ is analogous.

Recall that in multinomial choice models what matters is differences in utilities. Therefore,
as a preliminary step, we rewrite the identification problem using the taste shock differences.
Without loss of generality, we label the women’s types as Y ≡ {1, ..., r}. Let ∆εi be the vector of
differences between every pair of taste shocks of man i ∈ I,

∆εi ≡ (εi1 − εi0, ..., εir − εi0, εi1 − εi2, ..., εi1 − εir, εi2 − εi3, ..., εi2 − εir, ..., εir−1 − εir), (9)

with length d ≡
(
r+1

2

)
.

Observe that each {Fx}x∈X ∈ F determines a corresponding family of d-dimensional condi-
tional CDFs of ∆εi, which we denote by {∆Fx}x∈X . Further, note that the first r components of
∆εi can be arbitrary, while the remaining (d− r) components are linear combination of the first
r components. Define the set

B ≡ {(b1, b2, ..., bd) ∈ Rd : br+1 = b1 − b2, br+2 = b1 − b3, ..., b2r−1 = b1 − br,

b2r = b2 − b3, ..., b3r−3 = b2 − br, ...,

bd = br−1 − br}.

By the above arguments, ∆Fx has support contained in B, i.e.,

λ∆Fx(B) = 1, (10)
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for every x ∈ X . We denote by ∆F the function space of all admissible {∆Fx}x∈X , each with
support contained in B. Moreover, one may want to impose various nonparametric restrictions
on {∆Fx}x∈X in order to obtain informative bounds on U (and ultimately, Φ), as highlighted by
Lemma 1. We denote by ∆F † ⊂ ∆F the restricted collection of conditional CDFs. We describe
later which classes of nonparametric restrictions on {∆Fx}x∈X are considered.

In summary, our objective is to construct the identified set of U , defined as

U∗ ≡ {U ∈ U : ∃ {∆Fx}x∈X ∈∆F † s.t.

py|x = κ(U,∆Fx, y) ∀(x, y) ∈ X × Y0},

where, with slight abuse of notation, we have replaced the argument Fx of κ(U, Fx, y) with ∆Fx.
We split the discussion into two steps. First, for any given U ∈ U , Section 4.4.1 explains how to
verify whether U ∈ U∗. Second, Section 4.4.2 provides a result which reduces the computational
burden of repeating the first step for every U ∈ U . Lastly, we introduce some useful notation
adopted in the forthcoming arguments. R̄ denotes the extended real line. 0d is the d× 1 vector of
zeros. ∆εi,l is the l-th component of ∆εi and ∆Fx,l is the l-th marginal of ∆Fx. ∆εyi is the r × 1
subvector of ∆εi collecting the taste shock differences that are relevant when choosing y ∈ Y0,
with conditional CDF ∆F y

x .13

4.4.1 A linear program

As discussed above, U ∈ U∗ if and only if

∃ {∆Fx}x∈X ∈ ∆F † s.t. py|x = κ(U,∆Fx, y) ∀(x, y) ∈ X × Y0. (11)

Without parametric restrictions on the unobserved heterogeneity, (11) is an infinite-dimensional
existence problem. In what follows, we use and extend Torgovitsky (2019) to transform (11)
into a linear program. We illustrate the result in the easiest case where r = 2 (hence, d = 3).
Although notationally more cumbersome, the result for a generic r follows the same intuition and
is illustrated in Appendix A.2.

The two type case (r = 2r = 2r = 2)

For simplicity, assume that ∆F † = ∆F . Hence, (11) can be more explicitly written as

∃ {∆Fx}x∈X ∈ ∆F s.t. ∀x ∈ X ,

p1|x = 1 + ∆Fx(−Ux1,+∞, Ux2 − Ux1)−∆Fx(+∞,+∞, Ux2 − Ux1)−∆Fx(−Ux1,+∞,+∞),

p2|x = ∆Fx(+∞,+∞, Ux2 − Ux1)−∆Fx(+∞,−Ux2, Ux2 − Ux1),

p0|x = ∆Fx(−Ux1,−Ux2,+∞).

(12)

13For instance, consider r = 2 (hence, d = 3). When choosing 0, man i evaluates εi1 − εi0 and εi2 − εi0.
Thus, given the definition of ∆εi in (9), ∆ε0i ≡ (εi1 − εi0, εi2 − εi0). Similarly, ∆ε1i ≡ (εi1 − εi0, εi1 − εi2) and
∆ε2i ≡ (εi2 − εi0, εi1 − εi2).
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Note that, for each x ∈ X , (12) depends on the values of ∆Fx at a finite number of 3-tuples.
We collect such 3-tuples in the following three sets:

Ax,1,U ≡ {−Ux1,+∞,−∞},Ax,2,U ≡ {−Ux2,+∞,−∞},Ax,3,U ≡ {Ux2 − Ux1,+∞,−∞}, (13)

where Ax,1,U collects the elements at which ∆Fx is evaluated along the first dimension, Ax,2,U
collects the elements at which ∆Fx is evaluated along the second dimension, and Ax,3,U collects
the elements at which ∆Fx is evaluated along the third dimension. We add −∞ to each set
because it will be key later to outline the defining properties of CDFs. Lastly, we define Ax,U ≡
Ax,1,U ×Ax,2,U ×Ax,3,U .

Thus, the infinite-dimensional existence problem (12) is equivalent to verifying whether there
exists a finite-domain function ∆F̄x : Ax,U → [0, 1] that satisfies the equations in (12) and that
can be extended to a proper CDF ∆Fx : R̄3 → [0, 1], for every x ∈ X . That is, (12) is equivalent
to

∃ ∆F̄x : Ax,U → [0, 1] s.t. ∀x ∈ X ,

p1|x = 1 + ∆F̄x(−Ux1,+∞, Ux2 − Ux1)−∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(−Ux1,+∞,+∞), (14)

p2|x = ∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(+∞,−Ux2, Ux2 − Ux1), (15)

p0|x = ∆F̄x(−Ux1,−Ux2,+∞), (16)

and {∆F̄x}x∈X can be extended to a proper family of conditional CDFs in ∆F . (17)

Importantly, observe that (14)-(16) are linear in ∆F̄x. Further, we show below that (17) can be
expressed as a finite collection of equations and inequalities that are also linear in ∆F̄x. Therefore,
we can transform (12) into a linear program.

We now explain how to write (17) as a finite collection of linear equations and inequalities. It
is clear that ∆F̄x can be extended to a proper CDF ∆Fx only if

∆F̄x satisfies the defining properties of a CDF. (18)

Consider first the case where the support restriction (10) is ignored in the definition of ∆F . Then,
based on Sklar’s Theorem (Sklar, 1959; 1996; Nelsen, 2006), Lemma 2 of Torgovitsky (2019) proves
that (18) is also sufficient for extendibility. In particular, the defining properties of CDFs are:
(i) ∆F̄x(a1, a2, a3) = 0 for every (a1, a2, a3) ∈ Ax,U that has at least one component equal to −∞.
That is,

∆F̄x(−∞, a2, a3) = 0,∆F̄x(a1,−∞, a3) = 0,∆F̄x(a1, a2,−∞) = 0 ∀(a1, a2, a3) ∈ Ax,U . (19)

(ii) ∆F̄x(a1, a2, a3) = 1 when al = +∞ for every l ∈ {1, 2, 3}. That is,

∆F̄x(+∞,+∞,+∞) = 1. (20)
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(iii) ∆F̄x is 3-increasing. Formally, given a pair of 3-tuples, (a1, a2, a3), (a′1, a′2, a′3) in Ax,U with
(a1, a2, a3) ≤ (a′1, a′2, a′3), let Vol∆F̄x

([a1, a
′
1] × [a2, a

′
2] × [a3, a

′
3]) denote the volume of the 3-box

[a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3]. ∆F̄x is called 3-increasing if

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≥ 0,

for every (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3).14
(21)

Note that (19)-(21) constitute a finite collection of equations and inequalities that are linear in
∆F̄x. Therefore, if (10) was absent, we could rewrite (12) as a linear program by direct application
of Lemma 2 of Torgovitsky (2019).

The presence of (10) slightly complicates our analysis as we need to extend the latter result
to handle such a support restriction.15 To do so, we first rewrite (10) in a more convenient way.
Specifically, note that (10) is equivalent to λ∆Fx(Bc) = 0 where Bc is the complement of B in R̄3.
Also observe that, when r = 2, B is simply the plane

B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3}.

Hence, Bc can be written as the union of the infinite collection of 3-boxes that lie fully above or
below such a plane. In particular, for each (b1, b2, b3) ∈ B, one can construct a 3-box Bb1,b2,b3 such
that Bc = ∪(b1,b2,b3)∈BBb1,b2,b3 . See Appendix A.1 for the representation of Bb1,b2,b3 .

In turn, assuming λ∆Fx(Bc) = 0 is equivalent to assuming

Vol∆Fx(Bb1,b2,b3) = 0 ∀(b1, b2, b3) ∈ B. (22)

Therefore, it is clear that ∆F̄x can be extended to a proper CDF ∆Fx satisfying (22) only if
the increasingness condition (21) holds as equality for every pair of 3-tuples, (a1, a2, a3), (a′1, a′2, a′3)
in Ax,U with (a1, a2, a3) < (a′1, a′2, a′3), such that the 3-box [a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3] is contained in

a box Bb1,b2,b3 for some (b1, b2, b3) ∈ B. Proposition 1 shows that such a condition is also sufficient
for extendibility when combined with (19)-(21).

Proposition 1. (Extendibility) Given U ∈ U and x ∈ X , letAx,U ≡ Ax,1,U×Ax,2,U×Ax,3,U , where
Ax,l,U is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Let ∆F̄x : Ax,U → [0, 1]

14Take (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U with (a1, a2, a3) ≤ (a′1, a′2, a′3). Then,

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≡

∑
v∈vert((a1,a2,a3),(a′1,a′2,a′3))

∆F̄x(v) ∗ sgn(v),

where vert((a1, a2, a3), (a′1, a′2, a′3)) is the set of the box’s vertices, v ≡ (v1, v2, v3) denotes a generic vertex, sign(v)
is equal to 1 if vl = al for an even number of l ∈ {1, 2, 3}, and equal to −1 otherwise; 0 is considered even.

15Torgovitsky (2019) discusses how to handle support restrictions in the case of one-dimensional CDFs. We
provide similar findings for multidimensional CDFs.
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be a function satisfying (19)-(21), and

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) = 0, (23)

for every (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) < (a′1, a′2, a′3),

and [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3] ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B.

Then, there exists a proper CDF ∆Fx : R̄3 → [0, 1] such that: (i) ∆F̄x can be extended to ∆Fx,
i.e., ∆Fx(a1, a2, a3) = ∆F̄x(a1, a2, a3) for each (a1, a2, a3) ∈ Ax,U ; (ii) λ∆Fx(B) = 1. �

Note that (23) constitutes a finite collection of equations and inequalities that are linear in
∆F̄x. Therefore, by combining (14)-(16), (19)-(21), and (23), we can transform (12) into a linear
program. By verifying the linear program for each U ∈ U , we can obtain the sharp identified set.

In addition, we give a simple condition to verify if a box [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3] is contained

in a box Bb1,b2,b3 for some (b1, b2, b3) ∈ B, as required by (23).

Lemma 2. (Zero-volume boxes) Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U × Ax,2,U × Ax,3,U ,
where Ax,l,U is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Take
(a1, a2, a3), (a′1, a′2, a′3) in Ax,U with (a1, a2, a3) < (a′1, a′2, a′3). Define the 3-box H ≡ [a1, a

′
1] ×

[a2, a
′
2]× [a3, a

′
3]. Then, H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B if and only if

a1 > a′2 + a′3 or a′1 < a2 + a3. (24)

�

As shown by Theorem 1 of Torgovitsky (2019), the above methodology remains valid under
various classes of nonparametric restrictions on {∆Fx}x∈X , which can be simply imposed on
{∆F̄x}x∈X as linear constraints. In particular, in the simulations of Appendix C and the empirical
application, we explore the identifying power of the following restrictions (not necessarily all
maintained simultaneously):

Assumption 5. (Nonparametric assumptions on {∆Fx}x∈X )

5.1. ∆εi is independent of Xi.

5.2. Conditional on Xi and for each l ∈ {1, ..., d}, ∆εi,l has a distribution symmetric at 0.

5.3. Conditional on Xi, {∆εi,l}l∈{1,...,d} are identically distributed.

5.4. Conditional on Xi, {∆εyi }y∈Y0 are identically distributed.

�

In Appendix A.3, we provide a formal statement of Theorem 1 of Torgovitsky (2019) and a list
of nonparametric distributional assumptions on the taste shock differences that can be generally
accommodated. Finally, Appendix A.4 contains an example of a linear program to solve.
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4.4.2 Simplifying grid search

To construct U∗, the analyst has to solve the linear program of Section 4.4.1 for every U ∈ U .
Typically, this is done in the partial identification literature by constructing a grid of points
to approximate U and then repeating the exercise of interest for each grid point. However, the
difficulty of implementing this approach increases with the size of the grid, which in turn, increases
exponentially with r, quickly leading to a computational bottleneck. In what follows, we give a
characterisation of U so that the issue of solving the linear program for every U ∈ U is reduced
to solving the linear program for a handful of U ∈ U . This mitigates the burden of doing grid
search. We first provide an intuition of the result and then a more formal statement.

For simplicity, we continue the example of Section 4.4.1 with r = 2 (hence, d = 3). For any
given x ∈ X , the only pieces of the linear program that might induce different sets of solutions for
different values of U are the 3-increasingness constraint, (21), and the support constraint, (23).
In fact, note that (21) is activated only for the pairs of 3-tuples in Ax,U that are componentwise
comparable. Similarly, (23) is activated only for the pairs of 3-tuples in Ax,U that are componen-
twise comparable and satisfy (24). We refer to such pairs as the critical pairs. Let h ≡ Π3

l=1hl be
the cardinality of Ax,U . Fix an order of the 3-tuples in Ax,U and list them in an h × 3 matrix,
αx,U . If the positions (i.e., row-indices) of the critical pairs in αx,U are different across two values
of U , then these two values of U will induce potentially different sets of solutions to the linear
program. Conversely, if the positions are the same, then the two values will induce the same
(possibly, empty) set of solutions. This idea can be used to ex-ante partition the parameter space,
U , into equivalence classes so that the researcher can solve the linear program only once for each
class.16

In what follows, we provide some sufficient conditions to establish whether the positions of the
critical pairs in αx,U are equal across two values of U . For every l ∈ {1, 2, 3}, fix an order of the
elements of Ax,l,U and list them in an hl× 1 vector, αx,l,U . Similarly, construct an (h1 + h2h3)× 1
vector, βx,U , listing αx,1,U and the sum of every possible element of αx,2,U with every possible
element of αx,3,U . Let Π1 be the set of all possible permutations without repetition of {1, ..., hl}
and let Π2 ≡ {<,=}hl−1. Define the functions

π1 : R̄hl → Π1 and π2 : R̄hl → Π2,

where π1(ω) sorts the hl elements of ω from smallest to largest and reports their positions in
the original vector; π2(ω) reports the relational operators, < or =, among the sorted elements
of ω. When ω contains multiple elements with the same value or indeterminate forms (like
+∞−∞), then we can adopt any convention on which element to sort first. Lastly, let π(ω) ≡
(π1(ω), π2(ω)) ∀ω ∈ R̄h. For instance, suppose ω = (100, 99,+∞). Then, π(ω) = {(2, 1, 3), (<,<
)}. Suppose ω = (5, 5,−∞). Then, π(ω) = {(3, 2, 1), (<,=)}.

16Torgovitsky (2019) suggests to ex-ante partition the parameter space in order to simplify grid search, even
though no algorithm is provided.
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Definition 1. (π-ordering) Take any U, Ũ ∈ U . U and Ũ have the same π-ordering if

π(αx,l,U) = π(αx,l,Ũ) ∀l ∈ {1, ..., d}, x ∈ X ,

π(βx,U) = π(βx,Ũ) ∀x ∈ X .

�

Proposition 2 shows that if U, Ũ ∈ U have the same π-ordering, then the positions of the
critical pairs in αx,U are equal to the positions of the critical pairs in αx,Ũ . Therefore, either both,
U and Ũ , lie inside or outside the identified set, U∗.

Proposition 2. (Simplify grid search over U) Take any U, Ũ in U with the same π-ordering.
Then, U ∈ U∗ if and only if Ũ ∈ U∗. �

Remark B.1 in Appendix B explains how Proposition 2 is used in practice to ex-ante partition
the parameter space.

5 Empirical application

In this section, we use our methodology to re-examine some of the questions considered in the
empirical literature on the marriage market that have been previously answered by relying on the
Logit 1to1TU model.

An important question is whether educational sorting has changed over time, as this can be key
to understanding the sources of inequality in intergenerational outcomes (see references in Section
1). Detecting changes in educational sorting is challenging because it requires disentangling the
effect of changes in the marginal probability distribution of education categories from potential
structural changes in the match surplus. In fact, men and especially women have become more
educated over time. This implies that individuals with higher education levels are mechanically
more likely to marry. We are thus interested in capturing the changes in educational sorting after
having accounted for the variations naturally arising due to distributional shifts in education.

The literature offers two approaches to do this. The first consists of using indices of sorting,
based on comparing empirical matches to a random matching counterfactual (e.g., Eika, Mogstad,
and Zafar, 2019). The second consists of using a structural model of the marriage market to
estimate individual preferences. For instance, one can take the 1to1TU model with X = Y ≡
{1, ..., r} listing education categories and study the evolution of D(Φ), as discussed in Section
4.1. The second approach has been implemented by CSW based on the Logit assumption. Both
approaches conclude that positive educational sorting has overall increased in the U.S. in the past
decades, although there is some debate about this trend when we distinguish among education
categories. For example, Eika, Mogstad, and Zafar (2019) find that positive educational sorting
has declined among the highly educated and increased among the less educated. Instead, CSW find
that positive educational sorting has increased particularly at the top of the education distribution.
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We use our methodology to investigate the robustness of the conclusions achieved via the structural
Logit approach to the dropping of the Logit assumption.

In addition to studying the evolution of educational sorting, this section touches upon another
important question in the empirical literature on the marriage market. In particular, as discussed
by CSW, the increase in educational sorting makes a higher stock of human capital more valuable
on the marriage market. Therefore, one should also expect an increase in the marital education
premium, especially at the highest levels of education and for women. Based on the Logit 1to1TU
model, CSW empirically confirm such a prediction for the U.S. We apply our methodology to
verify whether the same findings can be achieved without the Logit assumption.

The remainder of the section is organised as follows: in Section 5.1, we describe the data; in
Section 5.2, we present and interpret our results.

5.1 Data

We focus on the U.S. marriage market and take our data from the American Community Survey,
which is a representative extract of the census. To construct the final dataset, we follow the steps
outlined in Section I.A and Appendix B of CSW. In particular, from the 21, 583, 529 households
in the 2008 to 2014 waves, we take all white adults out of school. We record the education level
of each adult by distinguishing four categories: high school dropouts (HSD, or “1”); high school
graduates (HSG, or “2”); some college (SC, or “3”); four-year college graduates and graduate
degrees (CG, or “4”).17 We treat individuals as married if they define themselves as such, without
including cohabitation. We focus on first marriages and never-married singles. The final sample
consists of 1, 502, 157 couples and 136, 052 singles.

We define cohorts by using year of birth and take women to be one year younger. For instance,
cohort 1940 includes all men born in year 1940 and all women born in year 1941. In turn, the
sample analogue of p1940

y|x is computed by taking the ratio between the number of men of type
x ∈ X who are born in year 1940 and marry a woman of type y ∈ Y0 born in any year, and the
number of men of type x ∈ X who are born in year 1940. Similarly, the sample analogue of p1940

x|y

is computed by taking the ratio between the number of women of type y ∈ Y who are born in
year 1941 and marry a man of type x ∈ X0 born in any year, and the number of women of type
y ∈ Y who are born in year 1941.18 In what follows, we consider 28 cohorts, from 1940 to 1967,
as in CSW.

Figures 1 and 2 below are similar to Figures 1 and 2 of CSW and provide some key descriptive
facts. Figure 1 reveals that the proportion of college educated men increases until 1950, then drops,
and finally reverses into an increase around 1960. Instead, the proportion of college educated

17For the white population, CSW further distinguish between four-year college graduates (CG, or “4”) and
graduate degrees (CG+, or “5”). In the Logit case, the main conclusions remain unchanged even without this
distinction, as shown in Chiappori, Costa-Dias, and Meghir (2020). In our analysis too, the conclusions do not
change when distinguishing between CG and CG+, as we remark in Section 5.2.

18We ignore the issue of cohort mixing to exactly mimic the data construction process of CSW and make our
conclusions as comparable as possible. In particular, given that the modal age difference within couples is one year
in the data, CSW concentrate their analysis on couples in which the age difference takes one year.
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women always increases. Moreover, the proportion of college educated women is lower than that
of men in 1940, while the opposite is true by 1967. These changes imply that the evolution of
educational sorting cannot be inferred by simply comparing matching patterns across cohorts.
Figure 2 (a) shows an increase in the proportion of marriages of like with like. A substantial surge
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Figure 1: Education of men and women.

is also registered when focusing on the proportion of couples where both spouses have a college
degree, as shown in Figure 2 (b). However, these figures are not proof of an increase in positive
educational sorting because they may be mechanically driven by changes in the proportions of
individuals in each education category.

5.2 Results

For each of the 28 cohorts, we estimate the identified sets of Φ, D(Φ), C(U), and C(V ) under
two classes of nonparametric distributional assumptions on the taste shocks, which we refer to
as specifications [A] and [B]. Specification [A] imposes Assumption 5.4. Specification [B] imposes
Assumptions 5.2, 5.3, and 5.4. According to our simulations in Appendix C, such specifications
tend to deliver the tightest bounds among the various combinations of assumptions explored.

We start by discussing the results on educational sorting. The Logit estimates of D(Φ) are
positive, suggesting the presence of positive educational sorting in each education category and
cohort. In particular, Figure 3 plots the Logit estimates of D(Φ) demeaned over cohorts (blue
curves). If educational sorting has not changed over time, then the blue curves (and the smooth
violet curves representing trends) should be identical to the horizontal 0 line. The property
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Figure 2: Comparing spouses.

is violated for the highly educated, as the trend for D44,33(Φ) is increasing in the most recent
decades.19 We can thus conclude that there has been an increase in positive assortativeness, at
least among the highly educated, under the Logit assumption. More formally, based on the test
described in Section IV.A of CSW, the null hypothesis that educational sorting has not changed
over time is rejected: the Chi-squared test statistic has value 1, 047.725 with 243 degrees of
freedom and the p-value is below 10−99.20

Figure 4 reports our estimates of the identified set of D(Φ), under specifications [A] (blue
region) and [B] (dotted region).21 By construction, the dotted region is contained in (or is equal
to) the blue region. Further, the Logit estimates of D(Φ) (dark blue line) are contained in
the blue and dotted regions because Assumptions 5.2, 5.3, and 5.4 are satisfied when imposing
the Logit assumption. As in CSW, we obtain our estimates by assuming that the cohorts feature
independent matching processes. However, our analysis is more robust in many ways. Importantly,
we allow the taste shocks to have any distribution within specifications [A] and [B]. For instance,
the taste shocks can be correlated among each other, their distribution may freely vary across

19As discussed in Section 4.1, there is positive educational sorting among more educated people if D`(Φ) ≡
D44,33(Φ) > 0 and among less educated people if D`(Φ) ≡ D22,11(Φ) > 0. Further, positive educational sorting
increases across cohorts among more educated people if D44,33(Φ) increases across cohorts. Similarly, positive
educational sorting increases across cohorts among less educated people if D22,11(Φ) increases across cohorts.

20When distinguishing between CG and CG+, the conclusions on educational sorting based on the Logit as-
sumption are similar, as shown by Figure 15 of CSW and subsequent discussion. In particular, the null hypothesis
that educational sorting has not changed over time is rejected also with 5 types (the Chi-squared test statistic has
value 1, 573.717 with 432 degrees of freedom and the p-value is below 10−100).

21We do not demean the estimates in Figure 4 in order to study their signs.
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education categories, and there could be heteroskedasticity.
Figure 4 reveals that, under the classes of nonparametric distributional assumptions consid-

ered, the 1to1TU model is uninformative about the presence and trend of positive educational
sorting among the highly educated, as the estimates of D44,33(Φ) are unbounded above and be-
low.22 We find the presence of positive educational sorting among the less educated, as indicated
by the jump to positive values of the lower bound of D22,11(Φ) around 1954. However, once the
lower bound reaches the positive values, it does not exhibit any clear trend, thereby remaining
inconclusive about the evolution of positive educational sorting among the less educated. These
results suggest that the previous findings on educational sorting based on the Logit 1to1TU model
are driven by the Logit assumption.23,24

Table 1 confirms the above conclusions. The first section of the table reports the projections
of the estimated identified sets of Φ, averaged over cohorts 1940, 1941, and 1942 (“early cohorts”),
under specifications [A] and [B]. The second section of the table reports the projections of the
estimated identified sets of Φ, averaged over cohorts 1965, 1966, and 1967 (“late cohorts”), under
specifications [A] and [B]. The last section of the table reports the changes in estimates between
early and late cohorts. The average estimates of Φ under the Logit assumption (“Logit”) are also
included. When using the Logit assumption, the decline in surplus is always smaller (or inverted)
for more educated couples, which is in line with the increase in positive educational sorting at
the top of the distribution seen in Figure 3. This conclusion cannot be confirmed once the Logit
assumption is relaxed, as highlighted by the many unbounded intervals.25

We now move to discuss the results on the marital education premia. The black curves in
Figure 5 are the estimates of the marital education premia under the Logit assumption for men
and women. Panels (c) and (f) suggest that the marital college premium has increased for both
men (∆43(U)) and women (∆43(V )). The increase is particularly pronounced for women. Further,
while women of older cohorts had a negative marital college premium, this has become positive
for recent cohorts.26 The blue curves in Figure 5 are the estimates of C(U) and C(V ) under the
Logit assumption. The blue curves mimic the trends of the black curves closely, although they
are quite shifted from the black curves in panels (c) and (f).

Figure 6 reports our estimates of the identified sets of C(U) and C(V ) under specifications [A]
22The estimates are unbounded when the blue or dotted region hits the vertical axis limit.
23When distinguishing between CG and CG+, our estimates of D55,44(Φ), D55,33(Φ), and D44,33(Φ) are un-

bounded above and below. Therefore, the 1to1TU model still does not allow us to conclude anything about the
presence and trend of educational sorting among the highly educated, as in Figure 4.

24Figures D.1 and D.2 in Appendix D further disentangle the men and women’s contribution to D(Φ). They
highlight that the unboundedness of D22,11(Φ) (above) and D44,33(Φ) (above and below) is mostly driven by the
limited empirical content of the 1to1TU model on the women’s side.

25The Logit estimates in Table 1 for early and late cohorts are numerically different from the Logit estimates
in Table 6 of CSW due to two reasons. First, CSW construct those estimates by using the assumptions that the
evolution of the systematic match surplus is driven by education-specific drifts, which is not assumed here. Second,
CSW distinguish between CG and CG+. Nevertheless, the changes in the Logit estimates between early and late
cohorts that we obtain (last section of the table) are very close to CSW’s findings and, importantly, suggest the
same conclusions.

26When distinguishing between CG and CG+, the conclusions on the marital education premia based on the
Logit assumption are similar, as shown by Figures 20 and 21 of CSW and subsequent discussion.
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(blue region) and [B] (dotted region). Observe that we obtain unbounded intervals in almost every
cohort. This is particularly true for the women’s side, where the estimates of C21(V ), C32(V ), and
C43(V ) remain constantly unbounded above and below.27 In turn, the estimates of the marital
education premia will be unbounded as well, and nothing can be said about their evolution over
time. As earlier, this indicates that the previous evidence on increasing marital college premium
based on the Logit 1to1TU model is a consequence of the Logit assumption. No evidence of
an increase in the marital education premia has also been recently found by Christensen and
Connault (2022) using a different methodology.

6 Conclusions

This paper investigates the identifying power of the 1to1TU model for the systematic match
surplus and related policy-relevant quantities when no parametric distributional assumptions are
imposed on the unobserved heterogeneity. We conclude our analysis by highlighting three main
findings. First, we formally show that the 1to1TU model contains no information about the
systematic match surplus without restricting the distribution of the unobserved heterogeneity.
Second, we propose a computational approach for constructing the identified set of the systematic
match surplus that is based on principles of linear programming and works under various classes
of nonparametric distributional assumptions on the unobserved heterogeneity. Third, we use our
methodology to re-examine some relevant questions in the empirical literature on the marriage
market, which have been previously studied under the Logit assumption. Our estimates show
that, without parametric distributional assumptions, the 1to1TU model is inconclusive about the
evolution of educational sorting and marital education premia across cohorts. Therefore, most
of the previous evidence on increasing positive educational sorting and marital college premium
is likely to be driven by the Logit assumption. Our paper illustrates the usefulness of partial
identification approaches in testing the robustness of empirical results based on strong parametric
assumptions.

27We obtain the same results when distinguishing between CG and CG+. In particular, the estimates of C21(V ),
C32(V ), C43(V ), and C54(V ) remain constantly unbounded above and below.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Estimates of D(Φ), demeaned over cohorts, under the Logit assumption.

(a) (b) (c)

(d) (e) (f)

Figure 4: The blue and dotted regions are the estimated identified sets of D(Φ) under specifications [A] and [B],
respectively. The dark blue line represents the estimates of D(Φ) under the Logit assumption.
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(a) (b) (c)

(d) (e) (f)

Figure 5: The blue line represents the estimates of C(U) and C(V ) under the Logit assumption. The black line
represents the estimates of the marital education premia under the Logit assumption.

(a) (b) (c)

(d) (e) (f)

Figure 6: The blue region is the estimated identified set of C(U) and C(V ) under specifications [A]. The dotted
region is the estimated identified set of C(U) and C(V ) under specifications [B]. By construction, the dotted region
is contained in (or is equal to) the blue region. The dark blue line represents the estimates of C(U) and C(V )
under the Logit assumption.
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Assumptions
on unobservables Wife → 1 2 3 4

Husband ↓ Early cohorts
Logit

1
−2.06 −3.07 −5.22 −8.55

[A] −2.06 [−3.07,+∞) (−∞,+∞) (−∞,+∞)
[B] −2.06 [−3.07,+∞) (−∞,+∞) (−∞,+∞)

Logit
2

−3.73 −1.35 −3.4 −5.76
[A] [−5.3,−3.48] [−3.79,+∞) (−∞,+∞) (−∞,+∞)
[B] [−5.3,−3.48] [−3.63,+∞) (−∞,+∞) (−∞,+∞)

Logit
3

−5.29 −2.47 −2.12 −4.32
[A] (−∞,−4.69] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,−4.69] (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit
4

-8.01 -4 -2.46 -1.11
[A] (−∞,−6.59] (−∞,+∞) (−∞,+∞) [−5.74,+∞)
[B] (−∞,−6.59] (−∞,+∞) (−∞,+∞) [−4.4,+∞)

Husband ↓ Late cohorts
Logit

1
−3.34 −4.41 −5.61 −8.75

[A] −3.34 [−4.56,−2.29] (−∞,−4.6] (−∞,−6.79]
[B] −3.34 [−4.56,−3.65] (−∞,−5.05] (−∞,−7.26]

Logit
2

−5.1 −2.14 −3.18 −4.95
[A] (−∞,−5.1] [−5.02,+∞) [−11.58, 1.38] [−13.46, 2.67]
[B] (−∞,−5.1] [−5.02,+∞) [−11.58, 1.38] [−13.46, 2.54]

Logit
3

−6.98 −3.61 −2.3 −3.52
[A] (−∞,−6.27] (−∞,+∞) [−5.48,+∞) (−∞,+∞)
[B] (−∞,−6.27] (−∞,+∞) [−5.48,+∞) (−∞,+∞)

Logit
4

−9.13 −5.52 −3.49 −1.07
[A] (−∞,−7.92] (−∞,+∞) (−∞,+∞) [−6.16,+∞)
[B] (−∞,−7.92] (−∞,+∞) (−∞,+∞) [−2.16,+∞)

Husband ↓ Change
Logit

1
−1.28 −1.34 −0.39 −0.2

[A] −1.28 (−∞,−0.66] (−∞,+∞) (−∞,+∞)
[B] −1.28 (−∞,−0.7] (−∞,+∞) (−∞,+∞)

Logit
2

−1.37 −0.78 0.22 0.81
[A] (−∞, 0.1] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞, 0.1] (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit
3

−1.69 −1.14 −0.18 0.8
[A] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit

4

−1.12 −1.52 −1.03 0.04
[A] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 1: The first section of the table reports the projections of the estimated identified sets of Φ, averaged
early cohorts, under specifications [A] and [B]. The second section of the table reports the projections of the
estimated identified sets of Φ, averaged over late cohorts, under specifications [A] and [B]. The last section of the
table reports the change in estimates between early and late cohorts. Some intervals are singleton because of the
scale normalisations imposed (see Appendix C). The average estimates of Φ under the Logit assumption are also
included.
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A Further details on Sections 4.4.1 and 4.4.2

A.1 Characterisation of BcBcBc for r = 2r = 2r = 2

When r = 2 (hence, d = 3), recall that B is the plane

B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3}.

Given (b1, b2, b3) ∈ B, let Bb1,b2,b3 be a 3-box of any of these forms:

(b1,+∞]× [−∞, b2]× [−∞, b3], [−∞, b1)× [b2,+∞]× [b3,+∞],

(b1,+∞]× [−∞, b2)× [−∞, b3), [−∞, b1)× (b2,+∞]× (b3,+∞],

(b1,+∞]× [−∞, b2]× [−∞, b3), [−∞, b1)× [b2,+∞]× (b3,+∞],

(b1,+∞]× [−∞, b2)× [−∞, b3], [−∞, b1)× (b2,+∞]× [b3,+∞],

[b1,+∞]× [−∞, b2]× [−∞, b3), [−∞, b1]× [b2,+∞]× (b3,+∞],

[b1,+∞]× [−∞, b2)× [−∞, b3], [−∞, b1]× (b2,+∞]× [b3,+∞],

[b1,+∞]× [−∞, b2)× [−∞, b3), [−∞, b1]× (b2,+∞]× (b3,+∞].

Then, Bc = ∪(b1,b2,b3)∈BBb1,b2,b3 .

A.2 A linear program (generic rrr)

In this section, we generalise the discussion of Section 4.4.1 to any r. As in Section 4.4.1, we
illustrate the result in the case where ∆F † = ∆F . Hence, (11) becomes

∃ {∆Fx}x∈X ∈ ∆F s.t. ∀x ∈ X ,

p1|x = κ(U,∆Fx, 1), p2|x = κ(U,∆Fx, 2), ..., pr|x = κ(U,∆Fx, r), p0|x = κ(U,∆Fx, 0).
(A.2.1)

It is straightforward to explicitly express κ as in (12), although notationally cumbersome. Once
this is done, we can see that, for each x ∈ X , (A.2.1) depends on the values of ∆Fx at a finite
number of d-tuples. We collect such d-tuples in the sets Ax,1,U , ...,Ax,d,U , as in (13), where Ax,1,U
collects the elements at which ∆Fx is evaluated along the first dimension, ..., Ax,d,U collects
the elements at which ∆Fx is evaluated along the d-th dimension. Further, we define Ax,U ≡
×dl=1Ax,l,U . Thus, the infinite-dimensional existence problem (A.2.1) is equivalent to verifying
whether there exists a finite-domain function ∆F̄x : Ax,U → [0, 1] that satisfy the equations in
(A.2.1) and that can be extended to a proper CDF ∆Fx : R̄d → [0, 1], for every x ∈ X . That is,
(A.2.1) is equivalent to

∃ ∆F̄x : Ax,U → [0, 1] s.t. ∀x ∈ X ,

p1|x = κ(U,∆F̄x, 1), p2|x = κ(U,∆F̄x, 2), ..., pr|x = κ(U,∆F̄x, r), p0|x = κ(U,∆F̄x, 0), (A.2.2)

and {∆F̄x}x∈X can be extended to a proper family of conditional CDFs in ∆F . (A.2.3)
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Importantly, observe that (A.2.2) is a collection of r+1 equations that are linear in ∆F̄x. Further,
we show below that (A.2.3) can be expressed as a finite collection of equations and inequalities
that are also linear in ∆F̄x. Therefore, we can transform (A.2.1) into a linear program.

We now explain how to write (A.2.3) as a finite collection of linear equations and inequalities.
It is clear that ∆F̄x can be extended to a proper CDF ∆Fx only if (18) holds. Consider first the
case where (10) is ignored. Then, Lemma 2 of Torgovitsky (2019) shows that (18) is also sufficient
for extendibility. In particular, the defining properties of CDFs are:
(i) ∆F̄x(a1, ..., Ad) = 0 for every (a1, ..., ad) ∈ Ax,U that has at least one component equal to −∞.
That is,

∆F̄x(−∞, a2, ..., ad) = 0 ∀(a2, a3, ..., ad) ∈ ×dl=2Ax,l,U ,

∆F̄x(a1,−∞, a3, ..., ad) = 0 ∀(a1, a3, ..., ad) ∈ ×dl 6=2Ax,l,U ,
...

∆F̄x(a1, a2, ..., ad−1,−∞) = 0 ∀(a1, a2, ..., ad−1) ∈ ×d−1
l=1Ax,l,U .

(A.2.4)

(ii) ∆F̄x(a1..., ad) = 1 when al = +∞ for every l ∈ {1, ..., d}. That is,

∆F̄x(+∞, ...,+∞) = 1. (A.2.5)

(iii) ∆F̄x is d-increasing. Formally, given a pair of d-tuples, (a1, ..., ad), (a′1, ..., a′d) in Ax,U with
(a1, ..., ad) ≤ (a′1, ..., a′d), let Vol∆F̄x

(×dl=1[al, a′l]) denote the volume of the d-box ×dl=1[al, a′l]. ∆F̄x
is called d-increasing if

Vol∆F̄x
(×dl=1[al, a′l]) ≥ 0,

for every (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U ,

s.t. (a1, ..., ad) ≤ (a′1, ..., a′d).28
(A.2.6)

Note that (A.2.4)-(A.2.6) constitute a finite collection of equations and inequalities that are linear
in ∆F̄x. Therefore, if (10) was absent, we could rewrite (A.2.1) as a linear program by direct
application of Lemma 2 of Torgovitsky (2019).

Next, we discuss how to incorporate (10). As in Section 4.4.1, note that assuming λ∆Fx(B) = 1
is equivalent to assuming λ∆Fx(Bc) = 0 where Bc is the complement of B in R̄d. Also observe that
Bc can be written as the union of an infinite collection of d-boxes. In fact, given (γ, δ) ∈ R2, let
t ∈ T ≡ {1, ..., r− 1}, p ∈ Pt ≡ {t+ 1, ..., r}, and q ∈ Qt,p where Qt,p ≡

(
r−t

2

)
− (r− p) if r− t ≥ 2

and Qt,p ≡ d− (r − p) otherwise. Let Bt,p,qγ+δ,γ,δ be a d-box of any of these forms:
28Take (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U with (a1, ..., ad) ≤ (a′1, ..., a′d). Then,

Vol∆F̄x
(×d

l=1[al, a
′
l]) ≡

∑
v∈vert((a1,...,ad),(a′1,...,a′

d
))

∆F̄x(v) ∗ sgn(v),

where vert((a1, ..., ad), (a′1, ..., a′d)) is the set of the box’s vertices, v ≡ (v1, ..., vd) denotes a generic vertex, sign(v)
is equal to 1 if vl = al for an even number of l ∈ {1, ..., d}, and equal to −1 otherwise; 0 is considered even.
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{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp ≤ γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp ≥ γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp < γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp > γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp ≤ γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp ≥ γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp < γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp > γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp ≤ γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp ≥ γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp < γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp > γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp < γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp > γ, zq > δ}.

Then, Bc = ∪t∈T ,p∈Pt,q∈Qt,p ∪(γ,δ)∈R2 Bt,p,qγ+δ,γ,δ. In turn, assuming λ∆Fx(Bc) = 0 is equivalent to
assuming

Vol∆Fx(Bt,p,qγ+δ,γ,δ) = 0 ∀(γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p. (A.2.7)

Therefore, it is clear that ∆F̄x can be extended to a proper CDF ∆Fx satisfying (A.2.7) only if
the increasingness condition (A.2.6) holds as equality for every pair of d-tuples, (a1, ..., ad), (a′1, ..., a′d)
in Ax,U with (a1, ..., ad) < (a′1, ..., a′d), such that the box ×dl=1[al, a′l] is contained in a box Bt,p,qγ+δ,γ,δ

for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p. Proposition A.1 proves that such a condition is
also sufficient for extendibility when combined with (A.2.4)-(A.2.6).

Proposition A.1. (Extendibility) Given U ∈ U and x ∈ X , let Ax,U ≡ ×dl=1Ax,l,U , where Ax,l,U
is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, ..., d}. Let ∆F̄x : Ax,U → [0, 1] be
a function satisfying (A.2.4)-(A.2.6), and

Vol∆F̄x
(×dl=1[al, a′l]) = 0, (A.2.8)

for every (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U ,

s.t. (a1, ..., ad) < (a′1, ..., a′d),

and ×dl=1 [al, a′l] ⊂ B
t,p,q
γ+δ,γ,δ for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p.

Then, there exists a proper CDF ∆Fx : R̄d → [0, 1] such that: (i) ∆F̄x can be extended to ∆Fx,
i.e., ∆Fx(a1, ..., ad) = ∆F̄x(a1, ..., ad) for each (a1, ..., ad) ∈ Ax,U ; (ii) λ∆Fx(B) = 1. �

In addition, Lemma 2 also applies to verify if a box ×dl=1[al, a′l] is contained in a box Bt,p,qγ+δ,γ,δ

for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p
Lastly, as in Section 4.4.1, the above methodology remains valid under various classes of

nonparametric restrictions on {∆Fx}x∈X , which can be simply imposed on {∆F̄x}x∈X as linear
constraints.

A.3 Theorem 1 in Torgovitsky (2019)

In this section, we provide a formal statement of Theorem 1 in Torgovitsky (2019) within our
framework. We refer the reader to Definitions 1-5, Lemmas 1-2, and Corollary 1 in Torgovitsky
(2019), which are the other key results and definitions used by Theorem 1. In what follows, ∆Fx|C
denotes the restriction of ∆Fx to a subset, C, of its domain.
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Assumption A, Torgovitsky (2019) ∆F † satisfies the following properties: for each {∆Fx}x∈X ∈
∆F †, it holds that

1. ∆Fx(a) = ∆Fx̃(a) ∀x, x̃ ∈ {X ∩ X †0,m0}, ∀a ∈ R̄d, ∀m0 ∈ {1, ...,M0}, where each X †0,m0 is a
known (possibly empty) subset of X .

2. ∆Fx,l(a) = ∆Fx̃,l(a) ∀x, x̃ ∈ {X ∩ X †l,ml
}, ∀a ∈ R̄, ∀ml ∈ {1, ...,ML}, ∀l ∈ {1, ..., d}, where

each X †l,ml
is a known (possibly empty) subset of X .

3. {∆Fx,l}x∈X ∈ ∆F †l ∀l ∈ {1, ..., d}, where ∆F †l is a known collection of families of one-
dimensional conditional CDFs.

4. ρ(U, {∆Fx}x∈X ) ≥ 0 for some known vector-valued function ρ, where the inequality is inter-
preted component wise.

In Assumption A, Conditions 1 and 2 are independence restrictions on {∆Fx}x∈X and {∆Fx,l}x∈X ,
respectively. Condition 3 requires {∆Fx,l}x∈X to be extendible in the sense described below in
Theorem 1. Condition 4 allows for miscellaneous restrictions, represented here by a function ρ

chosen by the researcher. Any of the Conditions 1-4 can be made non-restrictive by using specific
choices of X †0,m0 , X

†
l,ml

, ∆F †l , or ρ. The restrictions listed in Assumption 5 of Section 4.4.1 can be
written in terms of 1-4.

Condition U, Torgovitsky (2019) Suppose that ∆F † satisfies Assumption A. A collection
of sets, {Ax,U}x∈X , satisfies Condition U if the following properties hold:

1. ∀x ∈ X , Ax,U ≡ ×dl=1Ax,l,U , where Ax,l,U ⊆ R̄ is closed and such that {+∞,−∞} ⊆ Ax,l,U
∀l ∈ {1, ..., d}.

2. There exists functions κ̄ and ρ̄ such that, ∀{∆Fx}x∈X ∈ ∆F †,

κ(U,∆Fx, y) = κ̄(U,∆Fx|Ax,U
, y) ∀(x, y) ∈ X × Y0,

ρ(U, {∆Fx}x∈X ) = ρ̄(U, {∆Fx|Ax,U
}x∈X ).

3. ∀l ∈ {1, ..., d}, there exists a collection of families of conditional subsdistributions, ∆F̄ †l ,
such that

∆F̄ †l is extendible to ∆F †l ,

∆F †l is reducible to ∆F̄ †l ,

∀{∆F̄x,l}x∈X ∈ ∆F̄ †l , every ∆F̄x,l has common domain Ax,l,U .

4. Ax,U = Ax̃,U ∀x, x̃ ∈ {X ∩ X †0,m0} and ∀m0 ∈ {1, ...,M0}.

5. Ax,l,U = Ax̃,l,U ∀x, x̃ ∈ {X ∩ X †l,ml
}, ∀ml ∈ {1, ...,ML}, and ∀l ∈ {1, ..., d}.
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Theorem 1, Torgovitsky (2019) Suppose that ∆F † can be represented as in Assumption A.
Take any U ∈ U . Let {Ax,U}x∈X be any collection of subsets of R̄d that satisfy Condition U.
U ∈ U∗ if and only if, for each x ∈ X , there exists ∆F̄x : Ax,U → [0, 1] such that:

py|x = κ̄(U,∆F̄x, y) ∀(x, y) ∈ X × Y0,

∆F̄x is a d-dimensional subdistribution ∀x ∈ X ,

∆F̄x(a) = ∆F̄x̃(a) ∀x, x̃ ∈ {X ∩ X †0,m0}, ∀a ∈ Ax,U , ∀m0 ∈ {1, ...,M0},

∆F̄x,l(a) = ∆F̄x̃,l(a) ∀x, x̃ ∈ {X ∩ X †l,ml
}, ∀a ∈ Ax,l,U , ∀ml ∈ {1, ...,ML}, ∀l ∈ {1, ..., d},

{∆F̄x,l}x∈X ∈ ∆F̄ †l ∀l ∈ {1, ..., d},

ρ̄(U, {∆F̄x}x∈X ) ≥ 0.

A.4 Example of a linear program

Let r = 2 (hence, d = 3). Fix U ∈ U . Impose, for instance, Assumption 5.2. Therefore,

Ax,1,U ≡ {−Ux1, Ux1, 0,+∞,−∞},

Ax,2,U ≡ {−Ux2, Ux2, 0,+∞,−∞},

Ax,3,U ≡ {Ux2 − Ux1,−Ux2 + Ux1, 0,+∞,−∞},

for every x ∈ X . By the arguments of Sections 4.4.1, U ∈ U∗ if and only if the following linear
program admits a solution with respect to ∆F̄x : Ax,U → [0, 1] for every x ∈ X :

p1|x = 1 + ∆F̄x(−Ux1,+∞, Ux2 − Ux1)−∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(−Ux1,+∞,+∞), (A.4.1)

p2|x = ∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(+∞,−Ux2, Ux2 − Ux1), (A.4.2)

p0|x = ∆F̄x(−Ux1,−Ux2,+∞), (A.4.3)

∆F̄x(−Ux1,+∞,+∞) = 1−∆F̄x(−Ux1,+∞,+∞), (A.4.4)

∆F̄x(+∞,−Ux2,+∞) = 1−∆F̄x(+∞,−Ux2,−∞), (A.4.5)

∆F̄x(+∞,+∞, Ux2 − Ux1) = 1−∆F̄x(+∞,+∞,−Ux2 + Ux1), (A.4.6)

∆F̄x(0,+∞,+∞) = 1/2, (A.4.7)

∆F̄x(+∞, 0,+∞) = 1/2, (A.4.8)

∆F̄x(+∞,+∞, 0) = 1/2, (A.4.9)

∆F̄x(−∞, a2, a3) = 0 ∀(a2, a3) ∈ Ax,2,U ×Ax,3,U , (A.4.10)

∆F̄x(a1,−∞, a3) = 0 ∀(a1, a3) ∈ Ax,1,U ×Ax,3,U , (A.4.11)

∆F̄x(a1, a2,−∞) = 0 ∀(a1, a2) ∈ Ax,1,U ×Ax,2,U , (A.4.12)

∆F̄x(+∞,+∞,+∞) = 1, (A.4.13)

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≥ 0 ∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3), (A.4.14)

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) = 0 ∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) < (a′1, a′2, a′3) and a1 > a′2 + a′3 or a′1 < a2 + a3.

(A.4.15)
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In the linear program above: (A.4.1)-(A.4.3) match the model-implied conditional choice proba-
bilities with the empirical ones; (A.4.4)-(A.4.9) impose Assumption 5.2 on ∆F̄x; (A.4.10)-(A.4.14)
ensure that ∆F̄x can be extended to a proper CDF; (A.4.15) impose that ∆F̄x concentrates its
mass within B.

B Proofs

B.1 Proof of Proposition 1

The proof revisits the proof of the multidimensional case of Lemma 2 of Torgovitsky (2019) to
accommodate the support restriction (10). It is organised in the following steps. In Step 0, we
report some useful definitions and results from copula theory. In Step 1, we introduce a subcopula.
In Steps 2 and 3, we extend this subcopula to a proper copula. In Step 4, we construct a proper
CDF from such a copula and show that it satisfies (10). The proof of Proposition A.1 follows
exactly the same steps, but becomes notationally more complicated.

Step 0 In this step, we report some definitions and results that are used below. We follow the
discussion in Appendix A of Torgovitsky (2019). See Sklar (1959; 1996) and Nelsen (2006) for
more details.

Definition of subdistribution Let A ≡ ×dl=1Al, where Al ⊆ R̄ and {−∞,+∞} ⊆ Al for each
l ∈ {1, ..., d}. A d-dimensional subdistribution is a function F̄ : A → [0, 1] such that:

1. F̄ (a1, ..., ad) = 0 for every (a1, ..., ad) ∈ A that has at least one component equal to −∞.

2. For each l ∈ {1, ..., d}, F̄ (a1, ..., ad) = al for every (a1, ..., ad) ∈ A that has all components
equal to +∞.

3. F̄ is d-increasing. That is, VolF̄ (×dl=1[al, a′l]) ≥ 0 for every pair of d-tuples, (a1, ..., ad), (a′1, ..., a′d) ∈
A with (a1, ..., ad) ≤ (a′1, ..., a′d).

A d-dimensional CDF is a subdistribution with domain R̄d.

Definition of subcopula Let T ≡ ×dl=1Tl, where Tl ⊆ [0, 1] and {0, 1} ⊆ Tl for each l ∈
{1, ..., d}. A d-dimensional subcopula is a function C̄ : T → [0, 1] such that:

1. C̄(t1, ..., td) = 0 for every (t1, ..., td) ∈ T that has at least one component equal to 0.

2. For each l ∈ {1, ..., d}, C̄(t1, ..., td) = tl for every (t1, ..., td) ∈ T that has all components,
except the l-th one, equal to 1.
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3. C̄ is d-increasing. That is, VolC̄(×dl=1[tl, t′l]) ≥ 0 for every pair of d-tuples, (t1, ..., td), (t′1, ..., t′d) ∈
T with (t1, ..., td) ≤ (t′1, ..., t′d).

A d-dimensional copula is a subcopula with domain [0, 1]d.

Sklar’s Theorem 1. Let F : R̄d → [0, 1] be a d-dimensional CDF with margins Fl : R̄→ [0, 1]
for each l ∈ {1, ..., d}. Then, there exists a d-dimensional copula C : [0, 1]d → [0, 1] such that
F (a1, ..., ad) = C(F1(a1), ..., Fd(ad)) for every (a1, ..., ad) ∈ R̄d. If Fl is continuous on R̄ for every
l ∈ {1, ..., d}, then C is unique. Otherwise, C is uniquely determined on ×dl=1{Fl(al) : al ∈ R̄}.

2. If C : [0, 1]d → [0, 1] is a d-dimensional copula and Fl : R̄→ [0, 1] is a one-dimensional CDF
for each l ∈ {1, ..., d}, then the function F : R̄d → [0, 1] such that F (a1, ..., ad) = C(F1(a1), ..., Fd(ad))
for every (a1, ..., ad) ∈ R̄d is a d-dimensional CDF with margins Fl for each l ∈ {1, ..., d}.

As for Lemma 2 of Torgovitsky (2019), the proof of Proposition 1 uses the second part of Sklar’s
Theorem. Further, it uses a lemma that is part of the proof of the first part of Sklar’s Theorem.

Sklar’s Lemma Let C̄ : T → [0, 1] be a d-dimensional copula. Then, there exists a d-
dimensional copula C : [0, 1]d → [0, 1] such that C(t1, ..., td) = C̄(t1, ..., td) for every (t1, ..., td) ∈ T .

Step 1 In this step, we introduce a subdistribution and a subcopula that will be useful below.
Hereafter, we focus on the case where r = 2 (hence, d = 3), as considered by Proposition 1.

Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U×Ax,2,U×Ax,3,U , where Ax,l,U is a finite subset of R̄
and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Let ∆F̄x : Ax,U → [0, 1]3 be a function satisfying
(19)-(21) and (23). As per the definition given in Step 0, ∆F̄x is a 3-dimensional subdistribution.
For each l ∈ {1, 2, 3}, let ∆F̄x,l be the l-th margin of ∆F̄x. That is,

∆F̄x,1 : Ax,1,U → [0, 1] s.t. ∆F̄x,1(a1) ≡ ∆F̄x(a1,+∞,+∞) ∀a1 ∈ Ax,1,U ,

∆F̄x,2 : Ax,2,U → [0, 1] s.t. ∆F̄x,2(a2) ≡ ∆F̄x(+∞, a2,+∞) ∀a2 ∈ Ax,2,U ,

∆F̄x,3 : Ax,3,U → [0, 1] s.t. ∆F̄x,3(a3) ≡ ∆F̄x(+∞,+∞, a3) ∀a3 ∈ Ax,3,U .

By Lemma 1 of Torgovitsky (2019), ∆F̄x,l is itself a one-dimensional subdistribution for each
l ∈ {1, 2, 3}.

Next, define the set

T ≡ T1×T2×T3 ≡ {∆F̄x,1(a1) : a1 ∈ Ax,1,U}×{∆F̄x,2(a2) : a2 ∈ Ax,2,U}×{∆F̄x,3(a3) : a3 ∈ Ax,3,U},

and define the function

C̄ : T → [0, 1] s.t. C̄(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)) = ∆F̄x(a1, a2, a3) ∀(a1, a2, a3) ∈ Ax,U .

As shown by Torgovitsky (2019), C̄ is a 3-dimensional subcopula with domain T .
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Step 2 In this step, we apply the one-dimensional case of Lemma 2 of Torgovitsky (2019) to
extend every marginal subdistribution ∆F̄x,l to a proper CDF.

Formally, Lemma 2 of Torgovitsky (2019) shows that, for each l ∈ {1, 2, 3}, there exists

∆Fx,l : R̄→ [0, 1] s.t. ∆Fx,l(al) = ∆F̄x,l(al) ∀al ∈ Ax,l,U .

Step 3 In this step, we prove that there exists a proper 3-dimensional copula C : [0, 1]3 → [0, 1]
such that:

C̄ can be extended to C, i.e., C(t) = C̄(t) for every t ∈ T , (B.1.1)

VolC(B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3)) = 0 ∀(b1, b2, b3) ∈ B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3}, (B.1.2)

where B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) is a 3-box of any of these forms:

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1))× [∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

(∆Fx,1(b1) +∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1))× (∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1))× [∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1))× (∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1)]× [∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1)]× (∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1)]× (∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞].

(B.1.3)

By Sklar’s Lemma, there exists a proper 3-dimensional copula C† : [0, 1]3 → [0, 1] such that C̄
can be extended to C†, i.e., C†(t) = C̄(t) for every t ∈ T . In particular, C† can be constructed by
multilinear interpolation, as shown by Nelsen (2006) for d = 2 and Sklar (1996) for a generic d.
In what follows, we show that C† can be tweaked into another 3-dimensional copula C : [0, 1]3 →
[0, 1] such that both (B.1.1) and (B.1.2) hold. This adjustment of C† is essentially a “volume
swapping/redistributing” procedure that appropriately introduces “holes” in C† so as to satisfy
both (B.1.1) and (B.1.2).

We start with two remarks, (B.1.4) and (B.1.5). First, consider any (t1, t2, t3), (t′1, t′2, t′3) ∈ T
with (t1, t2, t3) < (t′1, t′2, t′3) and take the 3-box [t1, t′1]× [t2, t′2]× [t3, t′3]. We say that such a box is
“atomic” if t1, t′1 are consecutive elements of T1, t2, t′2 are consecutive elements of T2, and t3, t′3 are
consecutive elements of T3. Let Atomic be the (finite) collection of these atomic boxes. Let Ãtomic

be the collection of every element of Atomic that is contained in a box B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) for
some (b1, b2, b3) ∈ B. Let Actomic be the complement of Ãtomic in Atomic. By continuity arguments,
there is no element of Actomic that is covered by the union of some boxes of the form (B.1.3). That
is,

@ H ∈ Actomic s.t. H ⊆ Z ≡ ∪(b1,b2,b3)∈BB∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3).

Therefore,
H ∩Zc 6= ∅ ∀H ∈ Actomic. (B.1.4)
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Second, by (23), C† is such that

VolC†([t1, t′1]× [t2, t′2]× [t3, t′3]) = 0,

for every (t1, t2, t3), (t′1, t′2, t′3) ∈ T ,

s.t. (t1, t2, t3) < (t′1, t′2, t′3),

and [t1, t′1]× [t2, t′2]× [t3, t′3] ⊂ B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) for some (b1, b2, b3) ∈ B.

Therefore,
VolC†(H) = 0 ∀H ∈ Ãtomic. (B.1.5)

Next, let λC† be the probability measure associated with C†. Let λ denote the Lebesgue
measure. Define the probability measure λC such that

λC(S) =
∑

H∈Ac
tomic

λC†(S ∩H)λ(S ∩H ∩ Zc)
λ(H ∩Zc) ∀S ⊆ [0, 1]3,

where λ(H ∩ Zc) 6= 0 for every H ∈ Actomic by (B.1.4). The CDF associated with λC is a 3-
dimensional copula C : [0, 1]3 → [0, 1].

For every H ∈ Atomic, observe that C and C† agree on each atomic box, i.e., VolC(H) =
VolC†(H). Indeed,

∀H ∈ Actomic VolC(H) ≡ λC(H) = λC†(H)λ(H ∩Zc)
λ(H ∩Zc) = λC†(H) ≡ VolC†(H),

∀H ∈ Ãtomic VolC(H) ≡ λC(H) = 0 = VolC†(H),
(B.1.6)

where the last equality in the second line uses (B.1.5).
Given that C† is an extension of C̄ by construction and C is equal to C† on each atomic box as

highlighted by (B.1.6), it follows that also C is an extension of C̄. Therefore, C satisfies (B.1.1).
Further,

λC(Z) =
∑

H∈Ac
tomic

λC†(Z ∩H)λ(Z ∩H ∩ Zc)
λ(H ∩Zc) =

∑
H∈Ac

tomic

λC†(Z ∩H) 0
λ(H ∩Zc) = 0.

Therefore, C satisfies (B.1.2).

Step 4 This step concludes the proof by constructing a proper d-dimensional CDF from C.
Define the function

∆Fx : R̄d → [0, 1] s.t. ∆Fx(a1, a2, a3) = C(∆Fx,1(a1),∆Fx,2(a2),∆Fx,3(a3)) ∀(a1, a2, a3) ∈ R̄d.

By Sklar’s Theorem, ∆Fx is a d-dimensional CDF. Following the proof of Lemma 2 of Torgovitsky
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(2019), ∆Fx is an extension of ∆F̄x. In fact, for every (a1, a2, a3) ∈ Ax,U ,

∆Fx(a1, a2, a3) ≡ C(∆Fx,1(a1),∆Fx,2(a2),∆Fx,3(a3)),

= C(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)),

= C̄(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)),

= ∆F̄x(a1, a2, a3).

Further, by (B.1.2), ∆Fx satisfies (22) or, equivalently, (10).

B.2 Proof of Lemma 2

Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U × Ax,2,U × Ax,3,U , where Ax,l,U is a finite subset
of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Take (a1, a2, a3), (a′1, a′2, a′3) in Ax,U with
(a1, a2, a3) < (a′1, a′2, a′3). Define the 3-box H ≡ [a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3].

First, we show that if H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3},
then (24) holds. For instance, suppose

Bb1,b2,b3 ≡ (b1,+∞]× [−∞, b2]× [−∞, b3].

Since H ⊂ Bb1,b2,b3 , it holds that

b1 < a1, (B.2.1)

b2 ≥ a′2, (B.2.2)

b3 ≥ a′3. (B.2.3)

By (B.2.2) and (B.2.3), it holds that b1 ≥ a′2 + a′3. By combining this with (B.2.1), it holds that
a′2 + a′3 ≤ b1 < a1. Therefore, (24) is verified because a1 > a′2 + a′3. As another example, suppose

Bb1,b2,b3 ≡ [−∞, b1]× (b2,+∞]× [b3,+∞].

Since H ⊂ Bb1,b2,b3 , it holds that

b1 > a′1, (B.2.4)

b2 < a2, (B.2.5)

b3 ≤ a3. (B.2.6)

By (B.2.5) and (B.2.6), it holds that b1 < a2 + a3. By combining this with (B.2.4), it holds that
a′1 < b1 < a2 + a3. herefore, (24) is verified because a′1 < a2 + a3. We can proceed similarly for
the other forms of Bb1,b2,b3 .

Second, we show that if (24) holds, then H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B. For instance,
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suppose that a1 > a′2 + a′3. Consider the box

Bb1,b2,b3 ≡ (b1,∞]× [−∞, b2]× [−∞, b3],

with b2 ≡ a′2 and b3 ≡ a′3. Observe that H ⊂ Bb1,b2,b3 . As another example, suppose that
a′1 < a2 + a3. Consider the box

Bb1,b2,b3 ≡ [−∞, b1]× (b2,+∞]× [b3,+∞],

with b2 ≡ a2 and b3 ≡ a3. Observe that H ⊂ Bb1,b2,b3 . We can obtain similar conclusions by using
the other forms of Bb1,b2,b3 .

B.3 Proof of Proposition 2

The proof is organised in the following steps. In Step 0, we recall the notation introduced in
Section 4.4.2 and introduce some new one. In Step 1, we present the notion of an equivalence
class for every U ∈ U and prove that if Ũ , Û ∈ U belong to the same equivalence class, then they
induce the same set of solutions of the linear program. In Step 2, we show how such equivalence
classes are related to the notion of π-ordering used in Proposition 2. In Step 3, we conclude.
Remark B.1 explains how Proposition 2 is used in practice.

For simplicity of exposition, we provide the proof of Proposition 2 for the case r = 2 (hence,
d = 3) and Assumption 5.2. The proof for a generic case follows exactly the same steps,
but becomes notationally more complicated. In the case considered, we have that Ax,1,U ≡
{−Ux1, Ux1, 0,+∞,−∞}, Ax,2,U ≡ {−Ux2, Ux2, 0,+∞,−∞}, and Ax,3,U ≡ {Ux2 − Ux1,−Ux2 +
Ux1, 0,+∞,−∞}, for every x ∈ X and U ∈ U . Therefore, for any given U ∈ U and by following
Section 4.4.1, U ∈ U∗ if and only if the linear program (A.4.1)-(A.4.15) has a solution with respect
to ∆F̄x : Ax,U → [0, 1] for each x ∈ X .

Step 0 In this step, we recall the notation introduced in Section 4.4.2 and introduce some new
ones.

Fix U ∈ U and x ∈ X . In the example considered, Ax,l,U has cardinality 5 for every l ∈ {1, 2, 3}.
Ax,U has cardinality 53. The image set of ∆F̄x, which we denote by ∆F̄x(Ax,U), has cardinality
53. Importantly, in all such sets, repetitions of elements are kept.

For every l ∈ {1, 2, 3}, fix an order of the 5 elements in Ax,l,U and list them in a 5× 1 vector,
αx,l,U . For instance,

αx,1,U ≡ (−Ux1, Ux1, 0,+∞,−∞)>,

αx,2,U ≡ (−Ux2, Ux2, 0,+∞,−∞)>,

αx,3,U ≡ (Ux2 − Ux1,−Ux2 + Ux1, 0,+∞,−∞)>.

Similarly, fix an order of the 53 3-tuples in AxU and list them in a 53 × 3 matrix, αx,U . Using
the same order, list the 53 elements of ∆F̄x(Ax,U) in a 53 × 1 vector, fx,U . Lastly, construct a
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(5 + 52)× 1 vector, βx,U , listing αx,1,U and the sum of every possible element of αx,2,U with every
possible element of αx,3,U .

Define the functions ι : ∆F̄x(Ax,U) → {1, 2, ..., 53}, where ι(k) is the row index of scalar k
in the vector fx,U , and τ : Ax,U → {1, 2, ..., 53}, where τ(k) is the row index of 3-tuple k in the
matrix αx,U . Define π1 and π2 as in Section 4.4.2.

Finally, by using the formula of Vol∆F̄x
, it is useful to write (A.4.14) and (A.4.15) in the

following more explicit way:

−∆F̄x(a1, a2, a3) + ∆F̄x(a′1, a2, a3) + ∆F̄x(a1, a
′
2, a3)−∆F̄x(a′1, a′2, a3)

+ ∆F̄x(a1, a2, a
′
3)−∆F̄x(a′1, a2, a

′
3)−∆F̄x(a1, a

′
2, a
′
3) + ∆F̄x(a′1, a′2, a′3) ≥ 0,

∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3), (B.3.1)

−∆F̄x(a1, a2, a3) + ∆F̄x(a′1, a2, a3) + ∆F̄x(a1, a
′
2, a3)−∆F̄x(a′1, a′2, a3)

+ ∆F̄x(a1, a2, a
′
3)−∆F̄x(a′1, a2, a

′
3)−∆F̄x(a1, a

′
2, a
′
3) + ∆F̄x(a′1, a′2, a′3) = 0,

∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U s.t. (a1, a2, a3) < (a′1, a′2, a′3) and a1 > a′2 + a′3 or a′1 < a2 + a3.

(B.3.2)

Step 1 In this step, we present the notion of an equivalence class for every U ∈ U and prove
that if Ũ , Û ∈ U belong to the same equivalence class, then they induce the same set of solutions
of the linear program (A.4.1)-(A.4.15). We add superscripts Ũ or Û to the function ∆F̄x to clearly
distinguish between a potential solution to the linear program for Ũ and a potential solution to
the linear program for Û .

Let x ∈ X and Ũ , Û ∈ U . Define

Cx(Ũ) ≡
{
{(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} : (t̃, q̃, r̃), (t̃′, q̃′, r̃′) ∈ Ax,Ũ , (t̃, q̃, r̃) ≤ (t̃′, q̃′, r̃′)

}
,

Dx(Ũ) ≡
{
{(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} : (t̃, q̃, r̃), (t̃′, q̃′, r̃′) ∈ Ax,Ũ , (t̃, q̃, r̃) < (t̃′, q̃′, r̃′), and t̃ > q̃′ + r̃′ or t̃′ < q̃ + r̃

}
,

Cx(Û) ≡
{
{(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} : (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û , (t̂, q̂, r̂) ≤ (t̂′, q̂′, r̂′)

}
,

Dx(Û) ≡
{
{(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} : (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û , (t̂, q̂, r̂) < (t̂′, q̂′, r̂′), and t̂ > q̂′ + r̂′ or t̂′ < q̂ + r̂

}
.

Definition B.1. (Equivalence class) Let Ũ , Û ∈ U . Û belongs to the equivalence class of Ũ at
x ∈ X if the following conditions hold:
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1. For every {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Cx(Ũ), there exists {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û) such that

ι(∆F̄ Ũ
x (t̃, q̃, r̃)) = ι(∆F̄ Û

x (t̂, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃)) = ι(∆F̄ Û

x (t̂′, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃)) = ι(∆F̄ Û

x (t̂, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃, r̃′)) = ι(∆F̄ Û

x (t̂, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂, q̂′, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂′)),

(B.3.3)

and vice-versa.

2. For every {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Dx(Ũ), there exists {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Dx(Û) such that

ι(∆F̄ Ũ
x (t̃, q̃, r̃)) = ι(∆F̄ Û

x (t̂, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃)) = ι(∆F̄ Û

x (t̂′, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃)) = ι(∆F̄ Û

x (t̂, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃, r̃′)) = ι(∆F̄ Û

x (t̂, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂, q̂′, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂′)),

(B.3.4)

and vice-versa.

3. π2(αx,l,Ũ) = π2(αx,l,Û) for every l ∈ {1, 2, 3}.

Let [Ũ ]x denote the equivalence class of Ũ at x ∈ X . �

Lemma B.1. Let x ∈ X and Ũ , Û ∈ U . If Û ∈ [Ũ ]x, then Ũ and Û induce the same set of
solutions of the linear program (A.4.1)-(A.4.15). �

Proof. Let x ∈ X and Ũ , Û ∈ U . As discussed in Section 4.4.2, the only pieces of the linear
program (A.4.1)-(A.4.15) that might induce different sets of solutions for different values of U are
(A.4.14) and (A.4.15). Therefore, if (A.4.14) and (A.4.15) are identical under Ũ and Û , then Ũ
and Û induce the same set of solutions of the linear program (A.4.1)-(A.4.15). In what follows,
we show that if Û ∈ [Ũ ]x, then (A.4.14) and (A.4.15) are identical under Ũ and Û . To do so,
we use the equivalent representations of (A.4.14) and (A.4.15), which are (B.3.1) and (B.3.2),
respectively.

Suppose Condition 3 of Definition B.1 holds. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Cx(Ũ) and a
corresponding {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û) such that (B.3.3) holds. Write constraint (B.3.1) at
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{Ũ , (t̃, q̃, r̃), (t̃′, q̃′, r̃′)}, where the terms of the form ∆F̄ Ũ
x (·) are unknowns to be determined by

solving the linear program. Relabel them as θι(∆F̄ Ũ
x (·)). Then, restate (B.3.1) as

− θι(∆F̄ Ũ
x (t̃,q̃,r̃)) + θι(∆F̄ Ũ

x (t̃′,q̃,r̃)) + θι(∆F̄ Ũ
x (t̃,q̃′,r̃)) − θι(∆F̄ Ũ

x (t̃′,q̃′,r̃))

+ θι(∆F̄ Ũ
x (t̃,q̃,r̃′)) − θι(∆F̄ Ũ

x (t̃′,q̃,r̃′)) − θι(∆F̄ Ũ
x (t̃,q̃′,r̃′)) + θι(∆F̄ Ũ

x (t̃′,q̃′,r̃′)) ≥ 0,
(B.3.5)

where θ is a 53 × 1 vector of unknowns and θh denotes the h-th element of θ. Do the same for Û ,

− θι(∆F̄ Û
x (t̂,q̂,r̂)) + θι(∆F̄ Û

x (t̂′,q̂,r̂)) + θι(∆F̄ Û
x (t̂,q̂′,r̂)) − θι(∆F̄ Û

x (t̂′,q̂′,r̂))

+ θι(∆F̄ Û
x (t̂,q̂,r̂′)) − θι(∆F̄ Û

x (t̂′,q̂,r̂′)) − θι(∆F̄ Û
x (t̂,q̂′,r̂′)) + θι(∆F̄ Û

x (t̂′,q̂′,r̂′)) ≥ 0.
(B.3.6)

By (B.3.3), the subscripts of θ in (B.3.5) and (B.3.6) are identical. Further, observe that if some or
all of the components of (t̃, q̃, r̃) are equal to (t̃′, q̃′, r̃′), then (B.3.5) becomes an equality. Condition
3 of Definition B.1 ensures that if some or all of the components of (t̃, q̃, r̃) are equal to (t̃′, q̃′, r̃′),
then the same holds for (t̂, q̂, r̂), (t̂′, q̂′, r̂′). Therefore, (B.3.5) and (B.3.6) are identical. In turn, if
Conditions 1 and 3 of Definition B.1 hold, then (B.3.1) is identical under Ũ and Û .

Next, take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Dx(Ũ) and a corresponding {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Dx(Û)
such that (B.3.4) holds. Analogously to above, write constraint (B.3.2) at {Ũ , (t̃, q̃, r̃), (t̃′, q̃′, r̃′)}
as

− θι(∆F̄ Ũ
x (t̃,q̃,r̃)) + θι(∆F̄ Ũ

x (t̃′,q̃,r̃)) + θι(∆F̄ Ũ
x (t̃,q̃′,r̃)) − θι(∆F̄ Ũ

x (t̃′,q̃′,r̃))

+ θι(∆F̄ Ũ
x (t̃,q̃,r̃′)) − θι(∆F̄ Ũ

x (t̃′,q̃,r̃′)) − θι(∆F̄ Ũ
x (t̃,q̃′,r̃′)) + θι(∆F̄ Ũ

x (t̃′,q̃′,r̃′)) = 0.
(B.3.7)

Do the same for Û ,

− θι(∆F̄ Û
x (t̂,q̂,r̂)) + θι(∆F̄ Û

x (t̂′,q̂,r̂)) + θι(∆F̄ Û
x (t̂,q̂′,r̂)) − θι(∆F̄ Û

x (t̂′,q̂′,r̂))

+ θι(∆F̄ Û
x (t̂,q̂,r̂′)) − θι(∆F̄ Û

x (t̂′,q̂,r̂′)) − θι(∆F̄ Û
x (t̂,q̂′,r̂′)) + θι(∆F̄ Û

x (t̂′,q̂′,r̂′)) = 0.
(B.3.8)

By (B.3.4), the subscripts of θ in (B.3.7) and (B.3.8) are identical. Therefore, (B.3.7) and (B.3.8)
are identical. In turn, if Condition 2 of Definition B.1 holds, then (B.3.2) is identical under Ũ
and Û .

Step 2 In this step, we show how the equivalence classes of Step 1 are related to the notion of
π-ordering used in Proposition 2.

Lemma B.2. Let x ∈ X and Ũ , Û ∈ U . If

i. π1(αx,l,Ũ) = π1(αx,l,Û) for every l ∈ {1, 2, 3},

ii. π2(αx,l,Ũ) = π2(αx,l,Û) for every l ∈ {1, 2, 3},

iii. π1(βx,Ũ) = π2(βx,Û),

iv. π2(βx,Ũ) = π2(βx,Û),

46



then Û ∈ [Ũ ]x. �

Proof. Condition ii of Lemma B.2 coincides with Condition 3 of Definition B.1.
Further, Condition i of Lemma B.2 implies Condition 1 of Definition B.1. Indeed, let x ∈

X . Take Ũ , Û ∈ U such that Condition i holds. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Cx(Ũ). Pick
(t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û such that τ((t̂, q̂, r̂)) = τ((t̃, q̃, r̃)) and τ((t̂′, q̂′, r̂′)) = τ((t̃′, q̃′, r̃′)). By
Condition i, it should be that {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û). Moreover, it holds that

τ((t̃′, q̃, r̃)) = τ((t̂′, q̂, r̂)),

τ((t̃, q̃′, r̃)) = τ((t̂, q̂′, r̂)),

τ((t̃′, q̃′, r̃)) = τ((t̂′, q̂′, r̂)),

τ((t̃, q̃, r̃′)) = τ((t̂, q̂, r̂′)),

τ((t̃′, q̃, r̃′)) = τ((t̂′, q̂, r̂′)),

τ((t̃, q̃′, r̃′)) = τ((t̂, q̂′, r̂′)).

Therefore, (B.3.3) holds.
Lastly, Conditions i-iv of Lemma B.2 imply Condition 2 of Definition B.1. Indeed, let x ∈ X .

Take Ũ , Û ∈ U such that Conditions i-iv hold. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Dx(Ũ). Pick
(t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û such that τ((t̂, q̂, r̂)) = τ((t̃, q̃, r̃)) and τ((t̂′, q̂′, r̂′)) = τ((t̃′, q̃′, r̃′)). By
Conditions i-iv, it should be that {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Dx(Û). Moreover, it holds that

τ((t̃′, q̃, r̃)) = τ((t̂′, q̂, r̂)),

τ((t̃, q̃′, r̃)) = τ((t̂, q̂′, r̂)),

τ((t̃′, q̃′, r̃)) = τ((t̂′, q̂′, r̂)),

τ((t̃, q̃, r̃′)) = τ((t̂, q̂, r̂′)),

τ((t̃′, q̃, r̃′)) = τ((t̂′, q̂, r̂′)),

τ((t̃, q̃′, r̃′)) = τ((t̂, q̂′, r̂′)).

Therefore, (B.3.4) holds.

Step 3 In this step, we combine Steps 1 and 2 and conclude. Let Ũ , Û ∈ U . Lemmas B.1 and
B.2 imply that if if Ũ and Û have the same π-ordering, then either both, U and Ũ , lie inside or
outside the identified set, U∗.

Remark B.1. (Proposition 2 in practice) In practice, we use Proposition 2 as follows. First,
we generate a grid of points covering U as precisely as possible, depending on the available
computational resources. We store the grid points in a matrix called grid. The number of
columns of grid is equal to r + 1. The number of rows of grid is equal to the number of values
of U considered. Second, we find the π-ordering of each row of grid. Third, we collect the rows
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of grid producing the same π-ordering into the same equivalence class. In Matlab, steps 2 and
3 can be straightforwardly implemented by applying the pre-built function sort, without the
necessity of solving an optimisation routine. Fourth, we select a representative grid point from
each equivalence class. Fifth, for each representative grid point, we solve the linear program of
Section 4.4.1. If the linear program has a solution, then all the rows of grid belonging to the
representative grid point’s equivalence class are saved. Otherwise, all such rows are discarded.
The collection of the rows of grid that are saved across different equivalence classes represents
U∗.

Note that the overall procedure can be easily parallelised. For instance, if Assumption 5.1
is not imposed, then steps 1-5 are entirely separable across x ∈ X , which substantially reduces
the computational burden. Further, note that if ∆F † = ∆F , then there is only one equivalence
class. Instead, if ∆F † ⊂ ∆F , then the number of equivalence classes increases with r and
the amount of nonparametric restrictions imposed on {∆Fx}x∈X . However, providing a general
formula for the number of equivalence classes does not seem possible to us. Lastly, observe that
if grid does not granularly span U , then one may obtain an imprecise approximation of U∗, due
to the risk of leaving unexplored some regions of the parameter space or neglecting potential
disconnections inside the identified set. This is a well-known issue in the partial identification
literature, where “gridding” is still the most popular approach to construct the sharp identified
set for high-dimensional parameters. We discuss how we have carefully addressed this issue in
Appendix C. �

C Simulations

In this section, we implement the methodology described in Section 4.4 using simulated data.
Given Assumption 5, we consider the six specifications of distributional assumptions summarised
in Table C.1. In order to ensure that the volume of our identified sets is not improperly inflated

Assumptions [1] [2] [3] [4] [5] [6]

5.1
5.2
5.3
5.4

Table C.1: Assumptions on the unobserved heterogeneity maintained in the different specifications.

relative to the point identified case, we impose some scale normalisations. In particular, for every
(x, y) ∈ X × Y , let

ULogit
xy ≡ log py|x

p0|x
, V Logit

xy ≡ log px|y
p0|y

, and ΦLogit
xy ≡ ULogit

xy + V Logit
xy ,

be the values of Uxy, Vxy, and Φxy, respectively, that are identified under the Logit assumption
(Choo and Siow, 2006). When Assumption 5.1 is not imposed, we divide each element of Ux· ≡
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(Uxy : y ∈ Y0) by Ux1/U
Logit
x1 for every x ∈ X and each element of V·y ≡ (Vxy : x ∈ X0) by

V1y/V
Logit

1y for every y ∈ Y . Hence, the scale normalisations are Ux1 ≡ ULogit
x1 for every x ∈ X

and V1y ≡ V Logit
1y for every y ∈ Y . Instead, when Assumption 5.1 is imposed, we divide each

element of U by U11/U
Logit
11 and each element of V by V11/V

Logit
11 . Hence, the scale normalisations

are U11 ≡ ULogit
11 and V11 ≡ V Logit

11 . Note that, when Assumption 5.1 is not imposed, we include
|X | + |Y| scale normalisations. This is because determining whether U (resp. V ) belongs to U∗

(resp. V∗) requires recovering |X | (resp. |Y|) CDFs. When Assumption 5.1 is imposed, we include
one scale normalisation on each side. This is because determining whether U (resp. V ) belongs
to U∗ (resp. V∗) requires recovering one CDF.

Observe that Assumptions 5.1-5.4 are always satisfied under the Logit specification. Therefore,
due to our choice of scale normalisations, ULogit = (ULogit

xy : (x, y) ∈ X × Y0), V Logit = (V Logit
xy :

(x, y) ∈ X0 × Y), and ΦLogit = (ΦLogit
xy : (x, y) ∈ X × Y) fall inside U∗, V∗, and Θ∗, respectively,

for each of specifications [1]-[6].
As a first exercise, we fix X = Y ≡ {1, 2} and investigate the identifying power of the 1to1TU

model for each of specifications [1]-[6]. We simulate the data under three DGPs:

(DGP1) {εiy}y∈Y0 are i.i.d., where εiy is distributed independently from Xi, as standard Extreme
Value Type I. Analogous assumptions are imposed on the women’s side. {px}x∈X and
{py}y∈Y are set equal to {p1950

x }x∈X and {p1950
y }y∈Y from Section 5.29 Φxy is set equal to

log p1950
y|x /p

1950
0|x +log p1950

x|y /p
1950
0|y for each (x, y) ∈ X×Y . Hence, by construction, the simulated

match probabilities are almost equal (not exactly equal, due to simulation error) to p1950
y|x

and p1950
x|y for every (x, y) ∈ Z.

(DGP2) εi is distributed independently of Xi as a normal mixture, with 2 equally weighted
components. Every mixture component has mean zero. The two mixture components have
the following variance-covariance matrices:

Σ =


1 1 1
1 1 1
1 1 1

 and Σ =


50 −10 −10
−10 50 −10
−10 −10 50

 .

Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and {py}y∈Y are set equal to
{p1940

x }x∈X and {p1940
y }y∈Y from Section 5. Φxy is calibrated so that the simulated match

probabilities are equal to p1940
y|x and p1940

x|y for every (x, y) ∈ Z.30

29Since r = 2 in this simulation, we regroup the 5 education types in 2 categories: {HSD, HSG} and {SC, CG,
CG+}.

30In order to calibrate Φxy, we use Proposition 2 in GS showing that

Φxy =
∂F ∗x ({p1940

y|x }y∈Y0)
∂p1940

y|x
+
∂G∗y({p1940

x|y }x∈X0)
∂p1940

y|x
,

where F ∗x ({p1940
y|x }y∈Y0) is the Legendre-Fenchel transform of Fx evaluated at {p1940

y|x }y∈Y0 and G∗y({p1940
x|y }x∈X0) is

the Legendre-Fenchel transform of Gy evaluated at {p1940
x|y }x∈X0 . We compute the Legendre-Fenchel transforms by

simulation and the derivatives numerically.
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(DGP3) εi is distributed as a normal mixture, with 2 equally weighted components. WhenXi = 1,
the first and second mixture components have the following means and variance-covariance
matrices:

µ =
2

2

 ,Σ =


1 1 1
1 1 1
1 1 1

 and µ =
0

0

 ,Σ =


50 −20 −20
−20 50 −20
−20 −20 50

 .

When Xi = 2, the first and second mixture components have the following means and
variance-covariance matrices:

µ =
0

0

 ,Σ =


1 1 1
1 1 1
1 1 1

 and µ =
4

4

 ,Σ =


40 0 0
0 40 0
0 0 40

 .

Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and {py}y∈Y are set equal to
{p1967

x }x∈X and {p1967
y }y∈Y from Section 5. Φxy is calibrated so that the simulated match

probabilities are equal to p1967
y|x and p1967

x|y for every (x, y) ∈ Z.

In Table C.2, we report the true values and the identified sets of U , V , Φ, D22,11(Φ), C21(U),
and C21(V ). Moreover, we report ULogit, V Logit, ΦLogit, D22,11(ΦLogit), C21(ULogit), and C21(V Logit).
We distinguish between the case when Assumption 5.1 is imposed (“w/ 5.1”) and the case when
Assumption 5.1 is not imposed (“w/o 5.1”) because, as highlighted earlier, these two cases entail
different scale normalisations.31 Note that, in DGP3, we do not consider specifications [1] and [2]
of Table C.1 because Assumption 5.1 does not hold.

We highlight a few facts from Table C.2. First, in each of the three DGPs considered, specifica-
tions [5] and [6] deliver the tightest bounds. This is consistent with the fact that specifications [5]
and [6] impose the strongest restrictions on the unobserved heterogeneity among the six specifica-
tions considered. Second, in none of the cases considered, the identified set of D22,11(Φ) is bounded
on both sides. This is because there is always at least one component of Φ whose identified set is
unbounded on at least one side. In particular, the upper bound for D22,11(Φ) is always infinity.
Third, in DGP1 and DGP2, the sign of D22,11(Φ) is recovered under specifications [5] and [6]. As
discussed in Section 4.1, detecting the sign of D22,11(Φ) is important in itself because it reveals
the direction of assortativeness. Graham (2011; 2013b) shows that if the taste shocks are i.i.d.,
then the sign of D22,11(Φ) is identified. Our simulations highlight that i.i.d.-ness is not a necessary
condition. Fourth, the identified sets of C21(U) and C21(V ) are always unbounded on at least one
side, except for C21(U) in DGP3 under specifications [5] and [6]. Such unboundedness implies
that the identified set of the marital education premium will also be unbounded on at least one
side (see Equation (2)). Further, the signs of C21(U) and C21(V ) are never identified. Lastly, in
DGP2 and DGP3, the assumption that the taste shocks are i.i.d. standard Extreme Value Type I
is misspecified. This implies that ULogit, V Logit, ΦLogit, D22,11(ΦLogit), C21(ULogit), and C21(V Logit)

31Consequently, the corresponding identified sets are not necessarily nested.
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are different, sometimes quite significantly, from the true values of U , V , Φ, D22,11(Φ), C21(U),
and C21(V ), respectively.

As a second exercise, we investigate how the identifying power of the 1to1TU model varies
as the number of types, r, increases. In particular, we simulate the data under three DGPs,
featuring r = 3, r = 4, and r = 5 for both sides of the market, respectively. In each DGP,
{εiy}y∈Y0 are i.i.d., where εiy is distributed independently from Xi, as standard Extreme Value
Type I. Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and {py}y∈Y are set equal to
{p1950

x }x∈X and {p1950
y }y∈Y from Section 5.32 Φxy is set equal to log p1950

y|x /p
1950
0|x + log p1950

x|y /p
1950
0|y

for each (x, y) ∈ X × Y , as in DGP1 above.33 In Tables C.3-C.8, we report the true values and
the identified sets of U , V , Φ, D(Φ), C(U), and C(V ), under the three DGPs considered and
for specifications [5] and [6] of Table C.1. Overall, the findings of Table C.2 are confirmed. In
particular, note that in none of the cases considered, the identified sets of D(Φ), C(U), and C(V )
are bounded on both sides. Further, the ability of the model to recover the sign of D(Φ), C(U),
and C(V ) seems to deteriorate as r increases.

We conclude the section by discussing how we have obtained the grids of parameter values
to be evaluated by the linear program. For instance, consider the construction of the identified
set of U in the second simulation exercise with r = 4. Note that we can construct the identified
set of Ux· ≡ (Uxy : y ∈ Y0) separately across x ∈ X . Also observe that, for any given x ∈ X ,
Ux0 = 0 (location normalisation) and Ux1 = ULogit

x1 (scale normalisation). Therefore, for any given
x ∈ X , we have to span a 3-dimensional parameter space. For each j ∈ {500, 300, 100, 50, 20, 10},
we construct a 3-dimensional grid by evenly spacing 200 points between ULogit

xy − j and ULogit
xy + j

in each dimension y ∈ {2, 3, 4}. Such a grid has 9 × 106 rows, which can be feasibly evaluated
by combining the ex-ante partitioning approach of Proposition 2 (as discussed in Remark B.1),
parallelisation, and cluster facilities. We thus obtain six approximations of the identified set of
Ux·, one from each of the six grids evaluated. Next, for every pair of elements of Ux·, we plot the
two-dimensional projections of the six approximated identified sets in one graph. These graphs
allow us to accurately determine the boundaries of the identified set of Ux· and make sure that
there are no neglected sources of non-sharpness.34 Importantly, neither in the simulations nor
empirical application we have found a case featuring a disconnected two-dimensional projection.
This facilitates the computation of the identified sets of functions of U, V . As an example, Figures
C.1 (a) and (b) display two two-dimensional projections of the identified set of U1· ≡ (U1y : y ∈ Y0).
Each figure shows the projections of the six grids of points that are evaluated (in different shades
of grey) and the projections of the six approximations of the identified set of U1· (in blue). By
construction, we see a dense cloud of points around the Logit estimates, which gradually becomes
sparser as we move towards the boundaries of the parameter space.

32When r = 3, we regroup the 5 education types in 3 categories: {HSD}, {HSG}, and {SC, CG, CG+}. When
r = 4, we regroup the 5 education types in 4 categories: {HSD}, {HSG}, {SC}, and {CG, CG+}.

33Note that we simulate new data for each r = 3, 4, 5. This is why, for instance, ULogit
11 is not exactly equal

across Tables C.3-C.8.
34In particular, we say that the lower (upper) bound of the identified set of Uxy is equal to −∞ (+∞) if Uxy

can take value ULogit
xy − 500 (ULogit

xy + 500).
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Specifications U11 U12 U21 U22 V11 V12 V21 V22 Φ11 Φ12 Φ21 Φ22 D22,11(Φ) C21(U) C21(V )
from Table C.1

w/ 5.1
DGP1

True & Logit 1.16 0.28 0.07 1.4 1.23 −0.55 0.95 1.36 2.39 −0.27 1.02 2.76 4.4 0.2 −0.03
[1] 1.16 (−∞,+∞) (−∞,+∞) (−∞,+∞) 1.23 (−∞, 1] (−∞,+∞) (−∞,+∞) 2.39 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[2] 1.16 (−∞, 1.1] (−∞,+∞) [0.1,+∞) 1.23 (−∞, 1.2] (−∞,+∞) [0.1,+∞) 2.38 (−∞, 2.3] (−∞,+∞) [0.2,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

w/o 5.1
DGP1

True & Logit 1.16 0.28 0.07 1.4 1.23 −0.55 0.95 1.36 2.39 −0.27 1.02 2.76 4.4 0.2 −0.03
[3] 1.16 (−∞, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 (−∞,+∞) [0.01,+∞) 2.39 (−∞, 0.6] (−∞,+∞) [0.08,+∞) (−∞,+∞) [−0.89,+∞) (−∞,+∞)
[4] 1.16 (−∞, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 (−∞,+∞) [0.01,+∞) 2.39 (−∞, 0.6] (−∞,+∞) [0.08,+∞) (−∞,+∞) [−0.89,+∞) (−∞,+∞)
[5] 1.16 [−1.15, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 [−1.22, 1.22] [−0.27,+∞) 2.39 [−1.7, 0.6] [−1.15, 1.29] [−0.2,+∞) [0.3,+∞) [−0.89,+∞) [−1.3,+∞)
[6] 1.16 [−1.15, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 [−1.22, 1.22] [0.01,+∞) 2.39 [−1.7, 0.6] [−1.15, 1.29] [0.08,+∞) [0.58,+∞) [−0.89,+∞) [−1.1,∞)

w/ 5.1
DGP2

True 1.88 1.6 1.7 1.73 2 0.64 2.01 1.49 3.88 2.24 3.71 3.22 1.14 −0.07 −0.65
Logit 1.88 0.56 0.99 1.93 2 0.29 1.29 1.83 3.88 0.85 2.28 3.76 4.52 0.08 −0.24

[1] 1.88 (−∞,+∞) (−∞,+∞) (−∞,+∞) 2 (−∞, 2] (−∞,+∞) (−∞,+∞) 3.88 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[2] 1.88 (−∞, 1.8] (−∞,+∞) [0.1,+∞) 2 (−∞, 2] (−∞, 2.01] [0.1,+∞) 3.88 (−∞, 3.8] (−∞,+∞) [0.2,+∞) (−∞,+∞) (−∞,+∞] (−∞,+∞]

w/o 5.1
DGP2

True 1.88 1.6 0.99 1 2 0.29 2 0.68 3.88 1.89 2.99 1.68 0.67 −0.72 −1.3
Logit 1.88 0.56 0.99 1.93 2 0.29 1.29 1.83 3.88 0.85 2.28 3.76 4.52 0.08 −0.24

[3] 1.88 (−∞, 1.87] 0.99 [0.99,+∞) 2 0.29 (−∞, 2] [0.3,+∞) 3.88 (−∞, 2.16] (−∞, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[4] 1.88 (−∞, 1.87] 0.99 [0.99,+∞) 2 0.29 (−∞, 2] [0.3,+∞) 3.88 (−∞, 2.16] (−∞, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[5] 1.88 [−1.87, 1.87] 0.99 [0.99,+∞) 2 0.29 [−2, 2] [0.3,+∞) 3.88 [−1.58, 2.16] [−1.01, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[6] 1.88 [−1.87, 1.87] 0.99 [0.99,+∞) 2 0.29 [−2, 2] [0.3,+∞) 3.88 [−1.58, 2.16] [−1.01, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)

w/o 5.1
DGP3

True −1.13 0 −2.41 −0.09 −1.06 −1.61 −1.15 0 −2.19 −1.61 −3.56 −0.09 2.89 0.01 0.22
Logit −1.13 −0.45 −2.41 −1.22 −1.06 −1.61 −1.21 −1.24 −2.19 −2.06 −3.62 −2.46 1.03 −0.08 −0.01

[3] −1.13 (−∞, 0] −2.41 (−∞,−0.01] −1.06 −1.61 (−∞,−0.01] (−∞,−0.01] −2.19 (−∞,−1.61] (−∞,−2.42] (−∞,−0.02] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[4] −1.13 (−∞, 0] −2.41 (−∞,−0.01] −1.06 −1.61 (−∞,−0.01] (−∞,−0.01] −2.19 (−∞,−1.61] (−∞,−2.42] (−∞,−0.02] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[5] −1.13 [−1.12, 1.12] −2.41 [−2.41, 2.41] −1.06 −1.61 (−∞,−1.07] [−1.61, 1.61] −2.19 [−2.73,−0.49] (−∞,−3.48] [−4.02, 4.02] [−2.24,+∞) [−0.85, 0.91] [−0.11,+∞)
[6] −1.13 [−1.12, 0] −2.41 [−2.41,−0.01] −1.06 −1.61 (−∞,−1.07] [−1.61,−0.01] −2.19 [−2.73,−1.61] (−∞,−3.48] [−4.02,−0.02] [−1.12,+∞) [−0.48, 0.39] [−0.11,+∞)

Table C.2: Projections of the identified sets of U , V , Φ, D22,11(Φ), C21(U), and C21(V ) in the first simulation exercise when r = 2.
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Specifications U V Φ
from Table C.1 Wife → 1 2 3 1 2 3 1 2 3

Husband ↓
True & Logit

1
0.13 0.65 −0.26 0.6 −0.47 −2.63 0.73 0.18 −2.89

[5] 0.13 [0.2,+∞) (−∞,+∞) 0.6 −0.47 −2.63 0.73 [−0.27,+∞) (−∞,+∞)
[6] 0.13 [0.2,+∞) (−∞,+∞) 0.6 −0.47 −2.63 0.73 [−0.27,+∞) (−∞,+∞)

True & Logit
2

−1.11 1.08 0.56 0.55 1.15 −0.62 −0.56 2.23 −0.06
[5] −1.11 [−0.5,+∞) (−∞,+∞) [−0.5, 0.6] [−0.2,+∞) [−2.6, 2.6] [−1.61,−0.51] [−0.7,+∞) (−∞,+∞)
[6] −1.11 [−0.5,+∞) (−∞,+∞) [−0.5, 0.6] [−0.2,+∞) [−2.6, 2.6] [−1.61,−0.51] [−0.7,+∞) (−∞,+∞)

True & Logit
3

−2.78 −0.04 1.39 0 1.15 1.33 −2.78 1.11 2.72
[5] −2.78 [−2.7, 2.7] [−1.3,+∞) (−∞, 0.4] [−0.1,+∞) [−1.2,+∞) (−∞,−2.38] [−2.8,+∞) [−2.5,+∞)
[6] −2.78 [−2.7, 2.7] [0.1,+∞) (−∞, 0.4] [−0.1,+∞) [0.1,+∞) (−∞,−2.38] [−2.8,+∞) [0.2,+∞)

Table C.3: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 3.

Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C31(U) C21(U) C31(V ) C21(V ) D33,11(Φ) D22,11(Φ)
True & Logit 0.64 0.38 0.47 0.51 9.12 3.34

[5] (−∞,+∞) (−∞,+∞) [−1.56,+∞) [−0.58,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) [−0.65,+∞) [−0.58,+∞) (−∞,+∞) (−∞,+∞)

Table C.4: Projections of the identified sets of elements of D(Φ), C(U), and C(V ) in the second simulation exercise when r = 3. We take type “1” as reference
category.



Specifications U V Φ
from Table C.1 Wife → 1 2 3 4 1 2 3 4 1 2 3 4

Husband ↓
True & Logit

1
0.35 0.77 −0.28 −2.18 0.42 −0.48 −1.69 −4.16 0.77 0.29 −1.96 −6.34

[5] 0.35 [0.76,+∞) (−∞,+∞) (−∞,+∞) 0.42 −0.48 −1.69 −4.16 0.77 [0.28,+∞) (−∞,+∞) (−∞,+∞)
[6] 0.35 [0.76,+∞) (−∞,+∞) (−∞,+∞) 0.42 −0.48 −1.69 −4.16 0.77 [0.28,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
2

−1.15 1.17 0.2 −0.69 0.19 1.19 0.06 −1.4 −0.96 2.36 0.26 −2.09
[5] −1.15 [−0.25,+∞) (−∞,+∞) (−∞,+∞) [−0.25, 0.25] [0.76,+∞) [−0.76,+∞) [−3.81, 3.31] [−1.40,−0.9] [0.51,+∞) (−∞,+∞) (−∞,+∞)
[6] −1.15 [0.25,+∞) (−∞,+∞) (−∞,+∞) [−0.25, 0.25] [0.76,+∞) [−0.76,+∞) [−3.81, 3.31] [−1.40,−0.9] [1.02,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
3

−2.22 0.51 0.8 0.09 −0.66 0.75 0.89 −0.39 −2.88 1.26 1.69 −0.3
[5] −2.22 [−0.76,+∞) [−0.25,+∞) (−∞,+∞) (−∞,−0.25] (−∞,+∞) [−0.25,+∞) [−3.31, 3.81] (−∞,−2.47] (−∞,+∞) [−0.50,+∞) (−∞,+∞)
[6] −2.22 [−0.76,+∞) [−0.25,+∞) (−∞,+∞) (−∞,−0.25] (−∞,+∞) [−0.25,+∞) [−3.31, 3.81] (−∞,−2.47] (−∞,+∞) [−0.50,+∞) (−∞,+∞)

True & Logit
4

−3.73 −0.49 0.22 1.2 −1.76 0.17 0.71 1.13 −5.49 −0.32 0.93 2.33
[5] −3.73 [−3.31, 3.31] [−1.27,+∞) [−0.76,+∞) (−∞,−0.76] (−∞,+∞) (−∞,+∞) [−1.27,+∞) (−∞,−4.49] (−∞,+∞) (−∞,+∞) [−2.03,+∞)
[6] −3.73 [−3.31, 3.31] [−1.27,+∞) [0.25,+∞) (−∞,−0.76] (−∞,+∞) (−∞,+∞) [0.25,+∞) (−∞,−4.49] (−∞,+∞) (−∞,+∞) [0.50,+∞)

Table C.5: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 4.

Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C41(U) C31(U) C21(U) C41(V ) C31(V ) C21(V ) D44,11(Φ) D33,11(Φ) D22,11(Φ)
True & Logit 0.31 0.1 0.21 0.51 0.45 0.61 14.93 7.3 3.8

[5] (−∞,+∞) (−∞,+∞) (−∞,+∞) [−1.58,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) (−∞,+∞) [−0.64,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.6: Projections of the identified sets of elements of D(Φ), C(U), and C(V ) in the second simulation exercise when r = 4. We take type “1” as reference
category.



Specifications U V Φ
from Table C.1 Wife → 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Husband ↓
True & Logit

1
0.30 0.58 −0.35 −2.61 −3.12 0.39 −0.61 −1.73 −3.80 −4.32 0.69 −0.03 −2.08 −6.41 −7.44

[5] 0.30 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) 0.39 −0.61 −1.73 −3.80 −4.32 0.69 [−0.09,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] 0.30 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) 0.39 −0.61 −1.73 −3.80 −4.32 0.69 [−0.09,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
2

−1.28 1.03 0.12 −1.14 −1.81 0.09 1.11 0.01 −1.05 −1.73 -1.19 2.14 0.13 −2.19 −3.54
[5] −1.28 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [−3.32, 3.32] [−1.4,+∞) [−5.68,+∞) (−∞,+∞) (−∞,+∞) [−4.6, 2.04] [−0.88,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −1.28 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [−3.32, 3.32] [−1.4,+∞) [−5.68,+∞) (−∞,+∞) (−∞,+∞) [−4.6, 2.04] [−0.88,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
3

−2.03 0.51 0.78 −0.49 −0.96 −0.52 0.74 0.82 −0.25 −0.74 −2.55 1.25 1.60 −0.74 −1.70
[5] −2.03 [−1.53,+∞) [−2.36,+∞) (−∞,+∞) (−∞,+∞) (−∞, 1.66] (−∞,+∞) [−4.32,+∞) [−8.23, 9.45] (−∞,+∞) (−∞, 0.37] (−∞,+∞) [−6.68 +∞) (−∞,+∞) (−∞,+∞)
[6] −2.03 [−1.53 +∞) [−2.36,+∞) (−∞,+∞) (−∞,+∞) (−∞, 1.66] (−∞,+∞) [−4.32,+∞) [−8.23, 9.45] (−∞,+∞) (−∞, 0.37] (−∞,+∞) [−6.68,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
4

−3.21 −0.51 0.32 0.43 −0.16 −1.73 −0.32 0.32 0.63 0.03 −4.94 −0.83 0.64 1.06 −0.13
[5] −3.21 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞, 2.89] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −3.21 (−∞,+∞) (−∞,+∞) (−∞+∞) (−∞,+∞) (−∞, 2.89] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
5

−4.25 −0.66 0.27 0.89 1.01 −3.43 −1.13 −0.39 0.42 0.53 −7.68 −1.79 −0.12 1.31 1.54
[5] −4.25 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −4.25 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.7: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 5.

Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C51(U) C41(U) C31(U) C21(U) C51(V ) C41(V ) C31(V ) C21(V ) D55,11(Φ) D44,11(Φ) D33,11(Φ) D22,11(Φ)
True & Logit 0.43 −0.08 0.09 0.17 0.05 0.22 0.27 0.53 17.36 13.11 6.92 4.05

[5] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.8: Projections of the identified sets of elements of D(Φ), C(U), and C(V ) in the second simulation exercise when r = 5. We take type “1” as reference
category.



(a) (b)

Figure C.1: Projections of the six grids of points to be evaluated by the linear program (in different shades of grey)
and of the six approximations of the identified set of U1· (in blue). The red points represent the Logit estimates.

D Additional details on the empirical application

(a) (b) (c)

(d) (e) (f)

Figure D.1: The blue and dotted regions are the estimated identified sets of Uxx +Ux̃x̃−Uxx̃−Ux̃x for each x, x̃ ∈ X
with x > x̃, under specifications [A] and [B], respectively. The dark blue line represents the Logit estimates.
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(a) (b) (c)

(d) (e) (f)

Figure D.2: The blue and dotted regions are the estimated identified sets of Vyy +Vỹỹ−Vyỹ−Vỹy for each y, ỹ ∈ Y
with y > ỹ, under specifications [A] and [B], respectively. The dark blue line represents the Logit estimates..
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