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1 Introduction

A fundamental issue in the empirical analysis of decision problems is the presence of frictions

that prevent agents from learning the payoffs associated with the available alternatives. When

estimating parameters and making counterfactual predictions, it is common to make strong as-

sumptions about agents’ beliefs, which can weaken the credibility of the results. In particular,

most of the applied literature either imposes perfect information, or incorporates information

frictions by fully specifying agents’ beliefs, as in search models (Mehta, Rajiv, and Srinivasan,

2003; Honka and Chintagunta, 2016; Ursu, 2018), models with rational inattention (Caplin and

Dean, 2015; Matĕjka and McKay, 2015; Fosgerau, Melo, de Palma, and Shum, 2020; Csaba, 2018;

Caplin, Dean, and Leahy, 2019; Brown and Jeon, 2020), and models with preferences for risk

(for a review, see Barseghyan, Molinari, O’Donoghue, and Teitelbaum, 2018). Instead, this paper

develops a methodology to identify preferences and counterfactual outcomes from cross-sectional

choice data that imposes weak restrictions on the agents’ beliefs and, hence, is robust to whether

agents are perfectly or partially informed.

We consider a large class of static single-agent discrete choice models, where the decision maker

(DM) has to choose an alternative from a finite set. The payoff generated by each alternative

depends on the state of the world, which is randomly determined by nature. The DM has a prior

on the state of the world. Moreover, the DM can refine their prior upon reception of a private

signal representing the DM’s information structure. This information structure can range from full

revelation of the state of the world to no information whatsoever, depending on the latent frictions

encountered by the DM in the learning process. The DM uses the acquired information structure

to update their prior and obtain a posterior through the Bayes’ rule. Lastly, the DM chooses an

alternative maximising their expected payoff, where the expectation is computed via the posterior.

Under additional assumptions on information structures, this framework accommodates additive

random utility discrete choice models, discrete choice models with risk aversion, discrete choice

models with rational inattention, and some discrete choice models with search. Our objective is

(partially) identifying preferences and counterfactual outcomes while remaining agnostic about

information structures.

The model just described is a game against nature (Milnor, 1951). That is, it is a 1-player
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game in which a single self-interested player must choose a strategy. The player’s payoff depends

on their own strategy and the realization of the state of the world, which is decided at random by a

totally disinterested nature. Thus, we can use results from the theoretical and empirical literature

on N -player games with N ≥ 1 and weak assumptions on information structures to characterize

the sharp identified set for the payoff parameters. In particular, we revisit our framework through

the lens of 1-player Bayes Correlated Equilibrium (Kamenica and Gentzkow, 2011; Bergemann

and Morris, 2013; 2016). A fundamental result in the theoretical literature on robust predictions

(Theorem 1, Bergemann and Morris, 2016) is that the set of optimal strategies predicted by

our model under a large range of possible information structures is equivalent to the collection

of model-implied choice probabilities under the notion of 1-player Bayes Correlated Equilibrium.

Further, the latter collection is a convex set defined by linear equalities and inequalities. Therefore,

as shown by Syrgkanis, Tamer, and Ziani (2021) and Magnolfi and Roncoroni (2023), determining

whether a given parameter value belongs to the sharp identified set consists of solving a linear

program, which is a well-understood and computationally tractable problem.1

We make two methodological contributions. First, we develop a formal procedure to practi-

cally construct the sharp identified set for the payoff parameters when the state of the world is

continuous. In such a case, a 1-player Bayes Correlated Equilibrium is an infinite-dimensional

object, and, thus, the linear program to solve for each candidate parameter value is also infinite-

dimensional. Previous papers simplify the analysis by assuming that the state of the world is

discrete, or allowing for a continuous state of the world but, in practice, discretising its support

in some arbitrary bins to operationalise the linear programming procedure. Here, instead, we

propose a sieve approximation of the program along the lines of Han and Yang (2023) in their

study of treatment effects. We test this procedure in simulations and implement it in the empirical

application.

Second, we characterize sharp bounds on the counterfactual choice probabilities when agents

receive information about the state of the world via a policy program. This is an important
1Observe that the collection of model-implied choice probabilities under the notion of 1-player Bayes Correlated

Equilibrium can also be written as the Aumann expectation of the random set of 1-player Bayes Correlated
Equilibria. Therefore, the above characterization of the sharp identified set is equivalent to the one provided
by Beresteanu, Molchanov, and Molinari (2011). A distinctive feature of our framework is that this Aumann
expectation is defined by linear equalities and inequalities and, therefore, can be computed by solving a linear
program.
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question in the empirical literature on single-agent decision problems across different fields and is

largely absent in the literature on many-player games. To cite just a few examples, see Hastings

and Tejeda-Ashton (2008) on retirement fund options in Mexico, Hastings and Weinstein (2008)

and Bettinger, et al. (2012) on school choice, and Kling, et al. (2012) on Medicare Part D

prescription drug plans. This question is typically answered using field experiments which can

be very costly. Our characterization represents a powerful result because it allows the analyst to

assess the effect of programs of information provision before conducting such interventions. We

also provide sharp bounds on the maximum potential welfare cost of limited information which

may keep agents from choosing their first best.

Lastly, for readers keen to dive deeper into the identification nuances of our framework, Section

3.3 explores how it differs from traditional 2-player games commonly studied in the empirical

literature.

We use our methodology to study voting behaviour in the UK. We consider the spatial model

of voting, which is an important framework in political economy to explain individual preferences

for parties (Downs 1957; Black, 1958). This model postulates that an agent has a most preferred

policy and votes for the party whose position is closest to their ideal. In empirical analysis, it

is typically implemented by estimating a classical parametric discrete choice model with perfect

information (Alvarez and Nagler, 1995; 1998; 2000; Alvarez, Nagler, and Bowler, 2000). However,

in reality, uncertainty pervades voting (Shepsle, 1972; Weisberg and Fiorina, 1980; Enelow and

Hinich, 1981; Baron, 1994; Matsusaka 1995; Carpini and Keeter, 1996; Lupia and McCubbins,

1998; Feddersen and Pesendorfer, 1999; Matĕjka and Tabellini, 2019). That is, voters may be

aware of their own and the parties’ attitudes towards some popular issues, but they might be less

informed on how they themselves and the parties stand towards more technical or less debated

topics, and on the traits of the candidates other than those publicly advertised. Further, their

competence on these matters is likely to be arbitrarily different depending on, for example, political

sentiment, civic sense, attentional limits, media exposure, and candidates’ candor.

Despite the acknowledgement of the central role played by the sophistication of voters in de-

termining voting patterns, only a few empirical works have attempted to take it into account

while estimating a spatial voting framework (Aldrich and McKelvey, 1977; Bartels, 1986; Palfrey
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and Poole, 1987; Franklin, 1991; Alvarez, 1998; Degan and Merlo, 2011). This has been done

by exogenously and parametrically modelling how information frictions affect the perceptions of

DMs about the returns to voting (for instance, via an additive, exogenous, and parametrically

distributed evaluation error in the payoffs), or by parametrically specifying the probability of

being informed versus uninformed when voting. Instead, our methodology permits us to incor-

porate voter uncertainty under weak assumptions on the latent, heterogeneous, and potentially

endogenous process followed by voters to gather and evaluate information.

In particular, we focus on a setting where the state of the world consists of distances between

the voters and the parties’ ideological positions on a few popular policy issues, and of voter-party-

specific taste variables capturing voter perception on candidates’ qualities and parties’ positions

on obscure topics. We assume that each voter observes the realization of the former, but may be

uncertain about the realization of the latter. We estimate the model using data from the British

Election Study, 2017: Face-to-Face Post-Election Survey (Fieldhouse, et al., 2018) on the UK

general election held on 8 June 2017. We compare our findings with the results one gets under the

standard assumption that all agents are perfectly informed about the returns to voting. Several

conclusions on the payoff parameters achieved under the complete information assumption are

not unambiguously corroborated when we remain agnostic about information structures.

We use our characterization of counterfactual bounds to robustly assess to what extent imper-

fect information affects the well-being of voters and parties. We imagine an omniscient mediator

implementing a policy that gives voters perfect information about the state of the world. We

simulate the counterfactual vote shares and study how they change compared to the factual sce-

nario. This question has been debated at length in the literature. Political scientists have often

answered it by arguing that a large population composed of possibly uninformed citizens act as

if it was perfectly informed (for a review, see Bartels, 1996). Carpini and Keeter (1996), Bartels

(1996), and Degan and Merlo (2011) provide quantitative evidence to disconfirm such claims; the

first two by using auxiliary data on the level of information of the survey respondents as rated by

the interviewers or assessed by test items, and the latter by parametrically specifying the proba-

bility that a voter is informed. We contribute to this literature by providing a way to construct

counterfactual vote shares under perfect information, which neither requires the difficult task of
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measuring voters’ knowledge level in the factual scenario, nor imposes parametric assumptions

on the probability that a voter is informed. We find that voters benefit from full information as

it leads to a considerable drop in the abstention rate. We also find that transparency harms the

two historically dominant parties, i.e., the Conservative Party and the Labour Party, and favours

the other minor parties, i.e., the Liberal Democrats and the Green Party. This suggests that

some payoff-relevant information is unobserved by voters, and the biggest parties in the British

political scene benefit from such uncertainty. Moreover, we quantify the maximum voters’ welfare

cost of limited information and find that it is comparable in magnitude to reducing the left-right

ideological distance from a given party by around three points.

In addition to studying the impact of information provision, we investigate how the parties’

welfare changes when they modify their ideological positions on popular policy issues. We adapt to

our setting Theorem 1 of Bergemann, Brooks, and Morris (2022), which permits us to answer such

a question while holding fixed the voters’ information structures in the counterfactual scenario.

In agreement with several post-election studies, we find that, by holding a strong left ideological

position about tax and social care, the Labour Party gained numerous votes during the election

campaign.

The remainder of the paper is organised as follows. Section 2 describes the model. Section 3

discusses identification. Section 4 presents some simulations. Section 5 illustrates the empirical

application. Finally, section 6 concludes. The proofs are in Appendix B.

In what follows, we shorten Bergemann and Morris (2016) as BM16, Syrgkanis, Tamer, and

Ziani (2021) as STZ21, and Magnolfi and Roncoroni (2023) as MR23. We refer to 1-player Bayes

Correlated Equilibrium as 1BCE. Given a random variable Z with support Z, PZ denotes its

probability mass function (if Z is discrete) or density (if Z is continuous). ∆(Z) denotes the set

of all probability mass functions or densities with support contained in Z.

2 The model

We consider a DM who faces the problem of choosing an alternative from a finite set, Y . There

is an unknown state of the world, V , with support V , that enters directly in the DM’s utility,
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u : Y × V → R. u ∈ U , where U is the set of all functions mapping Y × V to R. The DM does

not observe the realization of V and has a prior belief on it, PV . Before making a choice, the

DM has an opportunity to learn more about the state of the world and resolve some uncertainty

about the payoffs generated by the alternatives. Formally, the DM can refine their prior on V

upon reception of a private signal, T , with support T and distribution PT |V (·|v) conditional on

V = v. We denote by PT |V the family of the signal’s conditional distributions for each v ∈ V , i.e.,

PT |V := {PT |V (·|v) : v ∈ V}. The DM uses PT |V and the received signal realization, t, to update

their prior on V via Bayes’ rule and obtains a posterior, PV |T (·|t). The DM chooses alternative

y ∈ Y maximising their expected utility computed under the posterior,
∫
V u(y, v)PV |T (v|t)dv. If

there is more than one maximising alternative, the DM applies some tie-breaking rule.

The informativeness of T about V (in the Blackwell sense) is inherently related to the frictions

potentially encountered by the DM while investigating the state of the world.2 These frictions can

stem from various sources, such as attentional and cognitive limits, financial constraints, spatial

and temporal boundaries, and cultural and personal biases. If the DM faces no information

frictions, they may process a signal revealing the realization of V and discover the payoffs with

certainty. Instead, if the DM experiences considerable information frictions, they may process a

signal adding nothing to their prior on V . A signal whose informativeness is between such two

extremes is plausible as well. In a typical empirical application, the information frictions the DM

encounters are not observed by the researcher. Hence, we proceed without assumptions on T and

PT |V .

We now provide a more compact representation of our framework. Following the terminology

of BM16, we define the baseline decision problem faced by the DM as G := {Y ,V , u, PV }. We also

define the information structure processed by the DM as S := {T ,PT |V }. G represents what the

DM knows before processing any signal. S consists of the additional information the DM learns

about V , together with the received realization of the signal. S belongs to S, which is the set

of all possible information structures processed by the DM. S contains the information structure

giving complete information (complete information structure), the information structure giving no

information in addition to the prior (null information structure), and any information structure
2Blackwell (1951; 1953) provides a rank-ordering of information structures in terms of their informativeness.
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whose informativeness is between those two extremes. The pair {G,S} constitutes the augmented

decision problem faced by the DM.

We denote by Y the DM’s choice. An optimal (mixed) strategy in the augmented decision

problem {G,S} is a distribution of Y conditional on T , PY |T := {PY |T (·|t) : t ∈ T }, such that, for

each t ∈ T , the DM maximises their expected utility by choosing any alternative y ∈ Y featuring

PY |T (y|t) > 0.3

Observe that the model just described is a game against nature (Milnor, 1951). That is,

it is a 1-player game in which a single self-interested player must choose a strategy. Nature is

indifferent among outcomes, has no payoff, and chooses V through randomisation. The player’s

payoff depends on their own strategy and the realization of V . One can categorize our model

as a specific example of 2-player games, where nature serves as the second player. However, our

framework diverges from traditional 2-player games commonly studied in the empirical literature.

In those games, the researcher models the payoffs of both players, both players can affect each

other’s payoffs through their choices, and such choices are observed by the researcher. In contrast,

in our model, nature’s payoff is not specified, nature selects a value for V randomly from PV ,

and this value remains unobserved by the researcher. These differences have implications for

identification power, as discussed in Section 3.3.

Our framework encompasses several settings of empirical interest, primitives of which are

typically estimated under strong assumptions on T and PT |V . For example, it includes additive

random utility discrete choice models (Logit, Nested Logit, Mixed Logit, Probit, etc.), discrete

choice models with preferences for risk (Barseghyan, Molinari, O’ Donoghue, and Teitelbaum,

2013; Barseghyan, Molinari, and Teitelbaum, 2016), models with rational inattention (Caplin and

Dean, 2015; Matĕjka and McKay, 2015; Csaba, 2018; Caplin, Dean, and Leahy, 2019; Brown and

Jeon, 2020; Fosgerau, Melo, de Palma, and Shum, 2020), and some search models (Hébert and

Woodford, 2018; Morris and Strack, 2019). See Appendix A for more details. Also, see Appendix

D for a connection with the consideration set literature.
3A mixed strategy arises if there are ties.
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3 Identification

3.1 Data generating process and characterization of the identified set

We assume that the utility function, u, and prior, PV , belong to parametric classes, {u(·; θu)}θu∈ΘU

and {PV (·; θV )}θV ∈ΘV
, indexed by the finite-dimensional structural parameters θu ∈ ΘU and θV ∈

ΘV , respectively. Let θ := (θu, θV ) ∈ Θ := ΘU × ΘV denote a generic parameter vector and

θ0 := (θ0,u, θ0,V ) denote the true parameter vector. Let Y1, . . . , Yn be an i.i.d. sample of choices,

where each choice is the outcome of the augmented decision problem, {G(θ0), S1}, . . . , {G(θ0), Sn},

respectively.

We do not know the exact information structures, S1, . . . , Sn, that were processed in each

of these decision problems and remain agnostic about those. In particular, we allow Si to be

different from Sj for each i 6= j, implying that the empirical distribution of choices, PY , is a

mixture of optimal strategies over various information structures. This heterogeneity embeds the

fact that different agents could encounter different information frictions and hence process more

or less informative signals. We treat the information structures processed by DMs as nuisance

parameters and study the question of identifying θ0 and counterfactuals of interest from PY .4

All DMs are assumed to rely on a common prior, PV (·; θ0,V ). Some heterogeneity of priors

across DMs can be introduced by including discrete payoff-relevant variables, (X, ε), that are

observed by DMs together with the signal and correlated with V . In that case, each DM has a

prior PV |X,ε(·; |x, e; θ0,V ) conditional on (X, ε) = (x, e). See Section 3.2 and Appendix C on how

to add (X, ε) to our framework.

In certain settings, some or all the components of V are observed by the researcher. For exam-

ple, in models of insurance plans, the researcher often has data on the ex-post claim experience of

the agents in the sample (see Example 2 in Appendix A). In those cases, θ0,V could be identified

directly from such additional data. In our general discussion below, we focus on the scenario

where V is unobserved to the researcher. This is the case considered in our empirical application

on voting behaviour.

The identified set of θ0 can be characterised according to Result 3 of STZ21 which encompasses
4It is implicit in our discussion that we also remain agnostic about tie-breaking rules and allow them to be

heterogenous across DMs.
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any N -player games with N ≥ 1. We explain how this result can be adapted to our specific case

for the sake of completeness in our exposition. Intuitively, the identified set of θ0 is the set of

θs for which the model predicts a distribution of Y that matches PY . Let R(θ, S) be the set of

optimal strategies of {G(θ), S} and R(θ) be the set of model-implied choice probabilities while

remaining agnostic about information structures. That is,

R(θ) := Conv
{
PY ∈ ∆(Y) : PY (y) =

∫
T

∫
V
PY |T (y|t)PT |V (t|v)PV (v; θV )dvdt ∀y ∈ Y ,

PY |T ∈ R(θ, S), S := {T ,PT |V } ∈ S
}
,

(1)

where we have used the fact that Y is independent of V conditional on T . Convexification

(via the convex hull operator, Conv{·}) allows us to include in R(θ) distributions of Y that are

mixtures of optimal strategies over various information structures. This ensures the heterogeneity

of information structures in the cross-section, as discussed above.5 The identified set of θ0 is

defined as,

Θ∗ := {θ ∈ Θ : PY ∈ R(θ)}.

The above definition of Θ∗ is not helpful in practice. This is because constructing R(θ)

following (1) is infeasible due to the necessity of exploring the large class S, which contains

infinite-dimensional objects. We overcome this issue by recalling that our decision problem is a

1-player game (game against nature), as discussed in Section 2. Hence, we can use results from

the theoretical literature on N -player games with N ≥ 1 and weak assumptions on information

to give a simpler characterization of R(θ) and, in turn, Θ∗.

In particular, we consider the notion of 1BCE (Kamenica and Gentzkow, 2011; Bergemann

and Morris, 2013; BM16). This notion refers to a theoretical setting where an omniscient mediator

makes incentive-compatible recommendations to the DM as a function of the state of the world

and consistent with the DM’s prior. If the DM follows such recommendations, the resulting

distribution of choices is a 1BCE. A fundamental result in the theoretical literature on robust
5To understand the convexification step better, note that the information structures in our framework are

econometrically similar to the equilibrium selection mechanisms in incomplete many-player games (Tamer, 2003;
Ciliberto and Tamer, 2009). In the former, convexification allows the information structures to differ across DMs.
In the latter, convexification allows the equilibrium selection mechanisms to differ across markets. See also STZ21
and MR23 about convexification.
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predictions (Theorem 1, BM16) is that the set of optimal strategies that arise from adding an

arbitrary information structure to the baseline decision problem G(θ) is equivalent to the set of

1BCE of G(θ). Therefore, to obtain R(θ), we do not need to explore the collection of all possible

information structures, but instead, we can calculate the set of 1BCE of G(θ). In the remainder

of the section, we formalise the equivalent characterization of R(θ) and Θ∗ based on 1BCE. In

Section 3.2, we zoom into the computational part. In Section 3.3, we discuss the identification

power of our model. In Section 3.4, we characterize bounds on counterfactuals of interest.

First, we give the definition of 1BCE of G(θ). In what follows, PY,V denotes the joint distri-

bution of Y and V .

Definition 1. (1BCE of G(θ)) Given θ ∈ Θ, PY,V is a 1BCE of G(θ) if:

1. It is consistent, i.e., the marginal of PY,V on Y is equal to the DM’s prior, PV (·; θV ):

∑
y∈Y

PY,V (y, v) = PV (v; θV ) ∀v ∈ V .

2. It is obedient, i.e., the DM who is recommended alternative y ∈ Y by an omniscient mediator

has no incentive to deviate:

∫
V
PY,V (y, v)(u(y, v; θu)− u(y′, v; θu))dv ≥ 0, ∀y′ ∈ Y \ {y},∀y ∈ Y .

We now state Theorem 1 of BM16.

Theorem 1. (Theorem 1 BM16) Given θ ∈ Θ, PY,V is a 1BCE of G(θ) if and only if there exists

an information structure S := {T ,PT |V } ∈ S and an optimal strategy PY |T of {G(θ), S} such

that PY,V arises from PY |T .6 �

We use Theorem 1 to equivalently rewrite R(θ) and Θ∗. For each θ ∈ Θ, let W(θ) be the set

of 1BCEs of G(θ). Let Q(θ) be the set of distributions of Y that arise from the 1BCEs of G(θ):

Q(θ) :=
{
PY ∈ ∆(Y) : PY (y) =

∫
V
PY,V (y, v)dv ∀y ∈ Y , PY,V ∈ W(θ)

}
.

6We say that PY,V arises from PY |T if PY,V (y, v) =
∫
t∈T PY |T (y|t)PT |V (t|v)PV (v; θV )dt, for every y ∈ Y and

v ∈ V.
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Theorem 1 implies that R(θ) = Q(θ). This can be seen in three steps. First, observe that the

Consistency and Obedience requirements defining 1BCE are linear in PY,V . Therefore, Q(θ) is a

convex set. Second, R(θ) contains distributions of Y that are mixture of optimal strategies over

various information structures. Hence, by Theorem 1, each PY ∈ R(θ) maps into a mixture of

1BCEs. Third, since Q(θ) is convex, any mixture of elements from the set is itself an element of

Q(θ). Therefore, R(θ) = Q(θ) and we can use Q(θ) in place of R(θ) to characterize Θ∗, as shown

by Result 3 of STZ21 and stated in our Proposition 1.

Proposition 1. (Result 3 STZ21) Let Θ∗∗ := {θ ∈ Θ : PY ∈ Q(θ)}. It holds that Θ∗ = Θ∗∗. �

3.2 Construction of the identified set

To see how to use Proposition 1 in practice, we first rewrite it in a more explicit way using

Definition 1. By Proposition 1 and Definition 1, θ belongs to Θ∗ if and only if there exists a

function PY,V : Y × V → R which satisfies the following constraints:

Consistency:
∑
y∈Y

PY,V (y, v) = PV (v; θV ) ∀v ∈ V ,

Obedience:
∫
V
PY,V (y, v)(u(y, v; θu)− u(y′, v; θu))dv ≥ 0 ∀y ∈ Y ,∀y′ ∈ Y \ {y},

Probability requirements: PY,V (y, v) ≥ 0 ∀y ∈ Y ,∀v ∈ V ,
∑
y∈Y

∫
V
PY,V (y, v)dv = 1,

Data match:
∫
V
PY,V (y, v)dv = PY (y) ∀y ∈ Y .

(2)

Observe that the above constraints are linear in PY,V . Therefore, when V is a finite set, (2)

reduces to a finite-dimensional linear program:

Consistency:
∑
y∈Y

PY,V (y, v) = PV (v; θV ) ∀v ∈ V ,

Obedience:
∑
v∈V

PY,V (y, v)(u(y, v; θu)− u(y′, v; θu)) ≥ 0 ∀y ∈ Y ,∀y′ ∈ Y \ {y},

Probability requirements: PY,V (y, v) ≥ 0 ∀y ∈ Y , ∀v ∈ V ,
∑
y∈Y

∑
v∈V

PY,V (y, v) = 1,

Data match:
∑
v∈V

PY,V (y, v) = PY (y) ∀y ∈ Y .

(3)
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In turn, we can construct Θ∗ following this procedure: first, generate a grid of points covering

Θ as precisely as possible, depending on the available computational resources; second, for each

θ in such a grid, check if (3) has a solution with respect to PY,V ; third, any θ for which (3) has a

solution belongs to the identified set.7

Observe that, when V is finite, we can dispense with the parameterisation of u and PV via θ,

as these functions can be fully and flexibly characterised by a finite number of parameters, one for

each combination of values of (Y, V ). In this case, we can also add nonparametric restrictions on

PV to the linear program, such as monotonicity, concavity/convexity, and Lipschitz restriction,

which can be written as linear constraints.

Further, we remark that (3) is linear in PY,V for a given θ, but it is not linear in both PY,V and

θ. This is why we grid over Θ to construct Θ∗. Linearity of (3) in PY,V and the parameters is

achieved when u is known and PV is treated as a finite-dimensional vector of parameters without

indexing it by θV . In this case, we can obtain the identified set of moments of PV by solving a

unique linear program, without gridding, as proposed by STZ21 for an auction framework. In

single-agent decision problems and other types of games, u is typically unknown and, therefore,

we have linearity only in PY,V .

The setting with finite V is considered by STZ21 and MR23. We refer to those papers for a

discussion on the computational burden of solving (3) as the cardinalities of Y and V increase.

When V is not a finite set, the simple finite-dimensional linear programming approach is no

longer applicable as PY,V is an infinite-dimensional object. This case has not been addressed

in the econometric literature on games, where assuming a finite V or discretising a non-finite V

in a few arbitrary bins to operationalise (2) are standard practices. Here we propose a formal

procedure to approximate Θ∗ when V is not finite, along the lines of Han and Yang (2023). As

a preliminary step, it is useful to equivalently rewrite (2) using the distribution of Y conditional
7Note that there is no need to recover the entire set of solutions of (3) for a given θ. Existence of at least one

solution of (3) is sufficient to include such a θ in the identified set.

12



on V as unknown, PY |V := {PY |V (·|v) : v ∈ V}:8

Obedience:
∫
V
PY |V (y|v)PV (v; θV )(u(y, v; θu)− u(y′, v; θu))dv ≥ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y},

Probability requirements: PY |V (y|v) ≥ 0 ∀y ∈ Y,∀v ∈ V,
∑
y∈Y

PY |V (y|v) = 1 ∀v ∈ V,

Data match:
∫
V
PY |V (y|v)PV (v; θV )dv = PY (y) ∀y ∈ Y.

(4)

We start from the simple case where V is a random variable and V := [v`, vu]. Consider the

following sieve approximation of PY |V (y|v) using Bernstein polynomials of order K:

PY |V (y|v) ≈
∑
k∈K

λyk,Kak,K(v), (5)

where ak,K(v) :=
(
K
k

)
(v−v`)k(vu−v)K−k

(vu−v`)K is a univariate Bernstein basis, λyk,K := PY |V (y|v`+(vu−v`) kK )

is its coefficient, K := {0, 1, . . . , K}, and K is finite. It can be shown that this approximation

tends to PY |V (y|v) uniformly over V as K goes to infinity. Observe that ak,K(v) ≥ 0. Hence, for

each y, PY |V (y|v) ≥ 0 for each v if and only if λyk,K ≥ 0 for each k. Further, ∑y∈Y PY |V (y|v) = 1

is approximately equal to ∑y∈Y λ
y
k,K = 1 for each k (Coolidge, 1949).9 Motivated by this result, a

finite-dimensional linear program approximating (4) can be obtained with respect to λ := (λyk,K :

(k, y) ∈ K × Y):

Obedience:
∑
k∈K

λyk,Kγ
y,y′

1,k,K(θ) ≥ 0 ∀y ∈ Y ,∀y′ ∈ Y \ {y},

Probability requirements: λyk,K ≥ 0 ∀k ∈ K,∀y ∈ Y ,
∑
y∈Y

λyk,K = 1 ∀k ∈ K,

Data match:
∑
k∈K

λyk,Kγ2,k,K(θV ) = PY (y) ∀y ∈ Y ,

(6)

where
γy,y

′

1,k,K(θ) :=
∫
V
ak,K(v)PV (v; θV )(u(y, v; θu)− u(y′, v; θu))dv,

γ2,k,K(θV ) :=
∫
V
ak,K(v)PV (v; θV )dv.

8Note that the Consistency constraint is redundant in (4) as
∑
y∈Y PY |V (y|v)PV (v; θV ) = PV (v; θV ) becomes∑

y∈Y PY |V (y|v) = 1, which is one of the probability requirements.
9See also Mogstad, Santos, and Torgovitsky (2018) for using Bernstein polynomials in their study of treatment

effects to approximate the marginal treatment effect function.

13



We can then approximate Θ∗ by verifying if (6) has a solution with respect to λ for each θ ∈ Θ.

The same logic applies when V is a D × 1 random vector and V := ×Dd=1[v`d , vud
]. In this

case, we can use (5), where K := ×Dd=1{0, 1, . . . , Kd}, Kd is finite for each d = 1, . . . , D, K is the

cardinality of K, ak,K(v) := ∏D
d=1

(
Kd

kd

) (vd−v`d
)kd (vud

−vd)Kd−kd

(vud
−v`d

)Kd
is a D-variate Bernstein basis, and

λyk,K := PY |V (y|v`1 + (vu1 − v`1) k1
K1
, . . . , v`D + (vuD

− v`D) kD

KD
) is its coefficient. We can further

generalise Bernstein polynomials to the case where V is the real line (Szasz, 1950; Butzer, 1954).

Suppose there are other discrete payoff-relevant variables which enter the DM’s information

set together with the signal. In this case, one should solve (6) for each value of such variables. For

instance, u could depend on covariates X observed by the DM and the researcher. u could also

depend on some variable ε observed by the DM but unobserved by the researcher. Our procedure

allows (X, V, ε) to be correlated, so that DMs can have heterogenous priors, PV |X,ε(·; |x, e; θV )

conditional on (X, ε) = (x, e). See Appendix C on how to include (X, ε) in (6).

Verifying if (6) has a solution for a given θ is computationally easy using standard algorithms,

such as the simplex optimizer or the interior-point optimizer. In Section 4, we discuss how to

choose K in practice and the computing time.

3.3 On the identification power of the model

Our identification procedure imposes weak assumptions on the DMs’ behavior by allowing for

any information structures through the 1BCE characterization. One might wonder whether be-

ing agnostic about information structures strips discrete choice models of any empirical content.

Proposition 2 shows that, even under the restrictive assumption of complete information, dis-

crete choice models do not retain identification power with respect to (u, PV ), unless further

assumptions are made, such as exogenous covariates and (non)parametric restrictions on (u, PV ).

Therefore, to generate informative bounds, our framework necessitates additional assumptions on

(u, PV ), mirroring the requirements of traditional “complete-information” discrete choice models.

In particular, in our simulations and empirical application, we show that our model can generate

relatively tight bounds by introducing exogenous covariates and parameterising u and PV .

Proposition 2. (Identification power) Let V := (Vy : y ∈ Y) be a |Y|×1 vector whose distribution

PV has full support and is absolutely continuous with respect to the Lebesgue measure. Let
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∆̃(R|Y|) be the set of all such PV . Let u(y, v) = ũ(y) + vy for each (y, v) ∈ Y × V , where

ũ : Y → R. Let Ũ be the set of all such ũ. Assume that all DMs process the complete information

structure and denote by PY ;ũ,PV
the (unique) model-implied choice distribution for any given

(ũ, PV ) ∈ Ũ × ∆̃(R|Y|). Let Θ∗ := {(ũ, PV ) ∈ Ũ × ∆̃(R|Y|) : PY = PY ;ũ,PV
} be the identified set

under these restrictions. Then, for every Y : (a) the projection of Θ∗ on ∆̃(R|Y|) is equal to Ũ ; (b)

the projection of Θ∗ on Ũ is equal to ∆̃(R|Y|). �

Nevertheless, even in the presence of exogenous covariates and parametric restrictions, we

expect our framework to generally provide less informative bounds on the primitives than those

in 2-player games and no assumptions on information structures. To see why, consider a 2-player

entry game with Y := {0, 1}. Let the payoff of player i ∈ {1, 2} be Yi(Xiβ + δYj + εi), where

Yj is the competitor’s action, Xi represents i’s covariates (scalar, for simplicity), and εi captures

i’s characteristics unobserved by the researcher. Each player i is assumed to observe (Xi, Xj, εi).

The researcher remains agnostic about i’s knowledge of εj and, hence, their ability to accurately

predict Yj. Note that this framework resembles our model (a game against nature) by letting

player i be the DM, assigning player j’s role to nature, and setting Yj := V . However, while in

the aforementioned 2-player game player j chooses Yj to maximise their own payoff, in our setting

nature is indifferent to the outcomes and selects V randomly from PV . Additionally, this value

is unobserved by the researcher. This leads to a generic reduction in the identification power of

our framework compared to 2-player games, given the fewer data and model restrictions available

for analysis. For example, a common way to achieve point identification of β and the parameters

governing the distribution of (ε1, ε2) in the above 2-player game is to use “at infinity” arguments

(Theorem 1, Tamer, 2003; Proposition 3, MR23). These involve finding extreme values of Xj that

induce player j always to choose one action, so that player i’s problem turns to a single agent

parametric discrete choice problem with complete information that we know to be point identified

(Manski, 1988). Such a strategy is clearly not implementable in our setting because the model

lacks assumptions regulating nature’s behaviour, let alone covariates influencing nature’s latent

choice of V , which needs to be integrated out.
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3.4 Counterfactual identification

A key objective in the empirical analysis of single-agent decision problems is predicting how indi-

vidual choices and social welfare change in counterfactual decision settings deployed in the same

environment. Our framework allows us to consider two types of policy experiments, illustrated in

what follows.

3.4.1 Information provision

In the first policy experiment, we study how the choice probabilities change in response to changes

in the availability of information to agents about the state of the world. Suppose the policy

maker implements some intervention that urges all agents to process information structure S.

Some agents may settle for this information structure, while others might prefer to collect further

information. In this new environment, the DM selects their favourite alternative from Y by solving

the augmented decision problem {G(θ0), S†}, where S† is an unknown information structure that

is at least as informative as S. S† is also called an expansion of S. Formally, S† := {T †,PT †|V } is

an expansion of S := {T ,PT |V } if there exists S� := {T �,PT �|V } such that S† is the combination

of S and S�. That is, T † := T × T �,
∫
T � PT †|V (t, t�|v)dt� = PT |V (t|v) for each t ∈ T and v ∈ V ,

and
∫
T PT †|V (t, t�|v)dt = PT �|V (t�|v) for each t� ∈ T � and v ∈ V (Definition 5, BM16).

We can characterize sharp bounds on the counterfactual choice probabilities while fixing the

policy-implemented information structure S and remaining agnostic about S� and, hence, S†. To

do this, we use once again Theorem 1 of BM16, which generically applies to any 1-player game

whose minimal information structure S has been set by the researcher. Namely, by Theorem 1

of BM16, the set of optimal strategies that arise from arbitrarily expanding S is equivalent to

the set of 1BCE of {G(θ0), S}. Therefore, the collection of counterfactual choice probabilities is

simply the set of 1BCE of {G(θ0), S}. Proposition 3 formalises these arguments.

Proposition 3. (Counterfactual bounds - information provision) Let S := {T ,PT |V } ∈ S be the

information structure implemented by a policy program. Let P∗Y †(h) be the identified set of the

counterfactual probability of choosing alternative h ∈ Y when DMs face the augmented decision

problem {G(θ0), S†}, where S† := {T †,PT †|V } ∈ S is some unknown expansion of S, potentially
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heterogenous across DMs. Then, P∗Y †(h) = ∪θ∈Θ∗ [Ψ`(h; θ),Ψu(h; θ)], where

Ψ`(h; θ) := min
P

Y †,V,T
:Y×V×T→R

∫
V

∫
T
PY †,V,T (h, v, t)dtdv s.t. (7)− (9),

Ψu(h; θ) := max
P

Y †,V,T
:Y×V×T→R

∫
V

∫
T
PY †,V,T (h, v, t)dtdv s.t. (7)− (9),

and

∑
y†∈Y

PY †,V,T (y†, v, t) = PV (v; θV )PT |V (t|v) ∀v ∈ V ,∀t ∈ T , (7)

∫
V
PY †,V,T (y†, v, t)(u(y†, v; θu)− u(k†, v; θu))dv ≥ 0 ∀y† ∈ Y ,∀k ∈ Y \ {y†},∀t ∈ T , (8)

PY †,V,T (y†, v, t) ≥ 0 ∀y† ∈ Y ,∀v ∈ V ,∀t ∈ T ,
∑
y†∈Y

∫
V

∫
T
PY †,V,T (y†, v, t)dtdv = 1. (9)

�

In Proposition 3, (7)-(9) define a 1BCE of {G(θ), S}. In particular, (7) is the Consistency

constraint, (8) is the Obedience constraint, and (9) ensures that PY †,V,T is a proper distribution.

Observe that computing Ψ`(h; θ) and Ψu(h; θ) for a given θ requires us to solve two linear programs

with respect to PY †,V,T . Further, Proposition 3 presumes that the identified set, Θ∗, has been

constructed in a pre-step. One could also append the program of Proposition 3 to (2), solve a

unique program, and thus find P∗Y †(h)× Θ∗ in one step. However, this strategy would not bring

notable computational advantages because the programs of Proposition 3 and (2) are not linear

in θ.

Understanding how information changes behaviour is a key question in the literature on single-

agent decision problems (see, for example, Athey, 2002) and is largely absent in the literature on

many-player games. In particular, as discussed in Section 1, several empirical papers are concerned

with assessing the impact on choices of sending agents information about payoff-relevant variables.

These papers typically exploit field experiments which can be very costly. Proposition 3 represents

a powerful result because it allows the analyst to assess the effect of programs of information

provision prior to conducting such interventions. In the empirical application of Section 5, we

apply Proposition 3 to the benchmark case where the policy intervention fully reveals the state of
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the world to agents, i.e., S is the complete information structure and, therefore, S† = S for each

DM.10

The complete information benchmark is also useful to evaluate the welfare cost of limited

information which may keep agents from choosing their first best. Specifically, given the true

parameter vector θ0 ∈ Θ, we consider the average gains in the model-implied ex-post utility from

expanding every DM’s information structure from the null information structure to the complete

information structure:

∆Eθ0 :=
∫
V
u
(
argmaxy∈Yu(y, v; θ0,u), v

)
PV (v; θ0,V )dv

−
∫
V
u
(
argmaxy∈Y

∫
V
u(y, v; θ0,u)PV (v; θ0,V )dv, v

)
PV (v; θ0,V )dv,

(10)

where the first term is the average ex-post utility when all agents process the complete information

structure and the second term is the average ex-post utility when all agents process the null

information structure. Observe that, in the complete information scenario, each DM earns an ex-

post payoff that is, on average, greater or equal than the ex-post payoff under the null information

structure. Therefore, ∆Eθ0 captures the maximum welfare cost of limited information. The

identified set of ∆Eθ0 is ∪θ∈Θ∗∆Eθ.

3.4.2 Changes in covariates

The second policy experiment considers a more traditional, yet important, question that interests

the literature on both single-agent decision problems and games. In particular, we study how the

choice probabilities change in response to changes in covariates X entering the utility function and

observed by the researcher and the DMs. Suppose the policy maker implements some intervention

which shifts the realization of X assigned to agents. In this new environment, the DM processes

the same information structure as in the factual scenario (i.e., differently from Proposition 3,

information structures are now held fixed), but has to account for the new realization of X in

evaluating their payoffs. Proposition 4 characterises sharp bounds on the counterfactual choice

probabilities.
10Any expansion S† of the complete information structure S is equal to S.
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Before presenting Proposition 4, we introduce some useful notation and provide the intuition

behind the result. Let X be the finite support of X. Let X† be the vector of covariates after

the intervention, with finite support X †. To compute the counterfactual choice probabilities,

imagine a hypothetical scenario where the DM simultaneously chooses an alternative from Y

for the augmented decision problem {G(θ0, X), S} and an alternative from Y for the augmented

decision problem {G(θ0, X
†), S}. The choices for {G(θ0, X), S} and {G(θ0, X

†), S} are denoted

by Y and Y †, respectively. Y † and S are not observed by the researcher. There is no interaction

between the two choices except for the common information structure. {G(θ0, X), G(θ0, X
†), S}

is called the linked augmented decision problem. {G(θ0, X), G(θ0, X
†)} is called the linked baseline

decision problem. Let PY,Y †,V |X,X† be a 1BCE of the linked baseline decision problem and consider

the set of such 1BCEs. By Theorem 1 above, the marginal of these distributions on (Y †, V ) is

precisely the set of counterfactual choice probabilities that we are looking for. These steps are

formalised by Theorem 1 in Bergemann, Brooks, and Morris (2022) and readapted to our case by

Proposition 4.

Proposition 4. (Counterfactual bounds - change in covariates) Let Q∗Y †|x,x†(h) denote the iden-

tified set of the counterfactual probability of choosing alternative h ∈ Y when DMs face the

augmented decision problem {G(θ0, x
†), S}, where S is the unknown information structure pro-

cessed in the factual scenario and potentially heterogenous across DMs, and x ∈ X and x† ∈

X † are the covariate realizations before and after the policy intervention, respectively. Then,

Q∗Y †|x,x†(h) = ∪θ∈Θ∗ [Φ`(h|x, x†; θ),Φu(h|x, x†; θ)], where

Φ`(h|x, x†; θ) := min
P

Y,Y †,V |X,X† (·|x,x†):Y2×V→R

∑
y∈Y

∫
V
PY,Y †,V |X,X†(y, h, v|x, x†)dv. s.t. (11)− (15),

Φu(h|x, x†; θ) := max
P

Y,Y †,V |X,X† (·|x,x†):Y2×V→R

∑
y∈Y

∫
V
PY,Y †,V |X,X†(y, h, v|x, x†)dv. s.t. (11)− (15),
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and

∑
y∈Y

∑
y†∈Y

PY,Y †,V |X,X†(y, y†, v|x, x†) = PV (v|x, x†; θ0,V ) ∀v ∈ V, (11)

∫
V
PY,Y †,V |X,X†(y, y†, v|x, x†)(u(y, v, x; θ0,u)− u(y′, v, x; θ0,u))dv ≥ 0,∀y ∈ Y,∀y′ ∈ Y \ {y},∀y† ∈ Y, (12)∫
V
PY,Y †,V |X,X†(y, y†, v|x, x†)(u(y†, v, x†; θ0,u)− u(k†, v, x†; θ0,u))dv ≥ 0,∀y† ∈ Y,∀k† ∈ Y \ {y†},∀y ∈ Y, (13)

PY,Y †,V |X,X†(y, y†, v|x, x†) ≥ 0 ∀y ∈ Y,∀y† ∈ Y,∀v ∈ V,
∑
y∈Y

∑
y†∈Y

∫
V
PY,Y †,V |X,X†(y, y†, v|x, x†)dv = 1, (14)

∑
y†∈Y

∫
V
PY,Y †,V |X,X†(y, y†, v|x, x†)dv = PY (y|x) ∀y ∈ Y. (15)

�

In proposition 4, (11)-(15) define a 1BCE of the linked baseline decision problem {G(θ,X), G(θ,X†)}.

In particular, (11) is the Consistency constraint, (12) and (13) are the Obedience constraints for

each decision problem, (14) ensures that PY,Y †,V |x,X† is a proper distribution, and (15) imposes

that the factual choice probabilities are equal to the empirical ones.

In the empirical application of Section 5, we apply Proposition 4 to study how the well-being

of UK parties changes when they modify their ideological positions on popular policy issues.

4 Simulations

We consider a model specification close to the one used in the empirical application of Section 5.

The payoff function is

u(y,Xi, Vi; β) := βXiy + Viy, (16)

where i indexes a generic DM, Y := {0, 1, . . . , D}, 0 denotes the outside option and its utility is

normalised to zero, Xiy and Viy are DM-alternative specific features. DM i observes the realization

of Xi := (Xi1, ..., XiD) but may be uncertain about the realization of Vi := (Vi1, ..., ViD). Xi and

Vi are assumed to be independent. DM i has a prior on Vi, which is assumed to be standard

Normal. The researcher observes the choice made by DM i and the realization of Xi for a large

sample of DMs, without knowing their information structures. Note that this framework reduces

to a standard multinomial Probit model under the additional assumption that each DM processes

the complete information structure.
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In the first simulation exercise, we illustrate how to choose the order of the Bernstein polyno-

mials, K. As developing data-driven procedures to choose K is still an open question in nonpara-

metric frameworks with point identification, here we follow the heuristic approach developed by

Han and Yang (2023) for partially identified settings. We simulate the data from (16) with |Y| = 3,

D = 2, and β = 1.3. Each Xiy is randomly drawn from a probability mass function constructed by

taking a bivariate normal and then discretising it to have support X := {−2.4,−0.4, 0.3}.11 The

data is generated assuming all DMs process the complete information structure. The first column

of Table 1 reports the identified set as K increases. To obtain such identified set, we explored

a grid of candidate values of β between -30 and 30 equally distanced at 0.001. The second and

third columns report Kd, which is taken to be constant across d = 1, . . . , D, and K := (Kd + 1)D,

respectively. For a given covariate realization x and parameter value β, the fourth column com-

putes the number of unknowns of the linear program (6), which is (D + 1)K. Observe that the

width of the bounds tends to increase weakly with K. When Kd = 3 (K = 64), the bounds are

narrow, but this may be due to our misspecification of the smoothness of the family of functions

to be approximated, PY |V . When Kd is sufficiently large, the width increases at a slower rate, and

the bounds start to converge. In particular, the bounds become stable from Kd = 10 (K = 1, 331)

onwards. Therefore, we set Kd = 10 for d = 1, . . . , D in the next simulations.12

The fifth column of Table 1 shows the average CPU time to assess if (6) has a solution for

a given (x, β), using the MOSEK solver for Matlab. The CPU time includes the calculation

of the integral γy,y
′,x

1,k,K (β) :=
∫
V ak,K(v)PV (v)(u(y, x, v; β) − u(y′, x, v; β))dv for each k ∈ K :=

×Dd=1{0, 1, . . . , Kd} and y, y′ ∈ Y .13 These integrals are computed by Monte Carlo integration

taking 104 random draws from the standard Normal distribution. The number of unknowns of (6)

increases linearly in K and exponentially in Kd. Hence, the CPU time increases approximately
11That is, Pr(X = x) = exp(−(x−µ)2/σ2)∑

x∈X
exp(−(x−µ)2/σ2)

for each x ∈ X .
12When the data are generated from (16) with Xi exogenous and Vi distributed as a standard Normal, then

β = 0 is expected to be part of the identified set. To see why, suppose β = 0 and each DM processes the null
information structure, so that the posterior is equal to the prior. Then, given the standard Normal prior, each
DM gets the same expected payoff, E(Viy) = 0, from every alternative y ∈ Y and chooses according to some
tie-breaking rule. Clearly, there will be a tie-breaking rule that reproduces the data. Hence, β = 0, coupled with
the null information structure for all DMs and some tie-breaking rule, generates the data. Nevertheless, the model
maintains enough identification power to exclude negative values of β, as shown in Table 1.

13Recall that PV is assumed to be standard normal, with Vi independent of Xi. Hence, γy,y
′

2,k,K :=∫
V ak,K(v)Pv(v)dv does not vary across values of the covariates and parameters and can be computed once.
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linearly in K and exponentially in Kd. The total time to construct the identified set depends

on the possibility of parallelising across (x, β). Using a computing cluster, we could exploit 600

parallel workers by coding our procedure as an SGE array job. Based on those, the rough total

CPU time is listed in the last column of Table 1.

Identified set Kd, d = 1, . . . , D Order polynomial Unknowns in (6) CPU time per (x, β) Total CPU time
K := (Kd + 1)D (D + 1)K

[0, 1.321] 3 16 48 0.046 s 42 s
[0, 1.402] 5 36 108 0.128 s 115 s
[0, 1.504] 7 64 192 0.226 s 204 s
[0, 1.565] 10 121 363 0.463 s 7 min
[0, 1.565] 15 256 7688 0.923 s 14 min
[0, 1.565] 20 441 1,323 1.539 s 23 min
[0, 1.565] 25 676 2,028 2.762 s 41 min
[0, 1.565] 30 961 2,883 3.561 s 53 min

Note: The true value of β is 1.3. D = 2. The CPU time per (x, β) includes the calculation of {γy,y
′,x

1,k,K (β)} using
104 random draws from the standard Normal distribution. The total CPU time is based on 600 parallel workers,
a grid of candidate values of β between -30 and 30 equally distanced at 0.001, and 9 possible realizations of Xi.

Table 1: Identified set in the first simulation exercise.

In the second simulation exercise, we investigate how the identified set varies as the cardinality

of the support of Xi increases. We generate data from (16) with |Y| = 3, D = 2, β = 1.3, and

all DMs processing the complete information structure. We distinguish two scenarios regarding

the dependence between Xi and Vi. In the first scenario, Xi and Vi are independent and the

prior on Vi is a standard normal, as in the first simulation exercise. In the second scenario,

Xi and Vi are allowed to be correlated and the prior on Vi conditional on Xi = x is a normal

distribution with mean and variance that vary with x. For each scenario, we study three cases.

In the first case, each Xiy is randomly drawn from a probability mass function constructed by

taking a bivariate normal and then discretising it to have support X := {−2.4,−0.4, 0.3}, as in

the first simulation exercise. In the second case, X := {−2.4,−0.5,−0.4, 0.1, 0.3}. In the third

case, X := {−2.4,−0.7,−0.5,−0.4, 0.1, 0.2, 0.3}. We set Kd = 10 for d = 1, . . . , D to construct

the identified set. For each X , the second and third columns of Table 2 show the identified set in

the first and second scenarios, respectively. When Xi is exogenous, we find that the identified set

shrinks as the cardinality of X increases. This is because variation in exogenous covariates induces

variation in agents’ choices, which helps the identification of β, as in standard parametric analysis.

Conversely, when Xi and Vi are allowed to be correlated, the identified set becomes larger as the
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cardinality of X increases. This is because, as the cardinality of X increases, there are smaller

groups of DMs with the same prior, which worsens the identification of β by “weakening” the

Consistency requirement of 1BCE.14

Support of Xiy Identified set Identified set
(Xi, Vi) independent (Xi, Vi) correlated

X := {−2.4,−0.4, 0.3} [0, 1.565] [0.548, 1.317]
X := {−2.4,−0.5,−0.4, 0.1, 0.3} [0, 1.505] [0.494, 1.448]
X := {−2.4,−0.7,−0.5,−0.4, 0.1, 0.2, 0.3} [0, 1.474] [0.479, 1.627]
Note: The true value of β is 1.3.

Table 2: Identified set in the second simulation exercise.

In the third simulation exercise, we investigate how the identified set changes as the information

structures processed by DMs in the underlying data generating process vary. We generate data

from (16) with |Y| = 3, D = 2, β = 1.3, Xi independent of Vi, each Xiy randomly drawn from

a probability mass function constructed by taking a bivariate normal and then discretising it to

have support X := {−2.4,−0.4, 0.3}, and Vi distributed as a standard Normal. We set Kd = 10

for d = 1, 2 to construct the identified set. We consider three scenarios. In the first scenario, all

DMs process the complete information structure, as in the first simulation exercise. In the second

scenario, 5/6 of the DMs process the complete information structure, and 1/6 process the null

information structure. In the third scenario, all DMs process the null information structure. For

each scenario, Table 3 shows the identified set (second column) and the value of β that would be

identified if the researcher assumed that all DMs process the complete information structure (third

column). Assuming that all DMs process the complete information structure, as in a standard

multinomial Probit model, leads to recovering one parameter value contained in the identified set.

When this assumption is misspecified (second and third scenario), the recovered parameter value

differs from the truth. The model has the least identifying power in the third scenario, when all

DMs process the null information structure. As soon as a significant proportion of DMs process
14When the data are generated from (16) and the prior varies across realizations of Xi, β = 0 may not be part

of the identified set. To see why the logic of Footnote 12 does not apply, suppose β = 0 and each DM processes
the null information structure, so that the posterior is equal to the prior. If Xi = x, then DM i gets an expected
payoff equal to E(Viy|Xi = x) := µy,x from every alternative y ∈ Y \ {0}, and a payoff equal to 0 from the outside
option. Hence, the DMs’ choices will differ depending on the realization of the covariates and the tie-breaking rule
adopted. In turn, the resulting distribution of choices may not coincide with the empirical one and, so, β = 0,
may not belong to the identified set.
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the complete information structure (first and second scenarios), the identifying power of the model

improves. Note, in fact, that, under the first scenario, the DMs take their decisions based on the

actual payoffs. Instead, under the third scenario, the DMs choose based on the expected payoffs

which are relatively homogenous in the population because computed using the same posterior.

Hence, under the third scenario, there is less variation in the DMs’ choices, which leads to wider

bounds.

Information structure Identified set βcom

Complete [0, 1.565] 1.3
Mixture [0, 1.706] 1.632
Null [0,∞) 15.186

Note: The true value of β is 1.3.

Table 3: Identified set in the third simulation exercise.

5 Empirical application

In this section, we use our methodology to study the determinants of voting behaviour during

the UK general election held on 8 June 2017 and perform some counterfactual exercises aiming

to evaluate the impact of uncertainty on the well-being of voters and parties.

5.1 Setting and model specification

The spatial model of voting is a dominant framework in political economy to explain individual

preferences for parties and, in turn, how such preferences shape the policies implemented by

democratic societies (Downs, 1957; Black, 1958). This model posits that an agent has a most

preferred policy (also called “bliss point”) and casts their vote in favour of the party whose

position is closest to their ideal (i.e., she votes “ideologically”). In empirical analysis, it is typically

implemented by estimating a classical parametric discrete choice model with perfect information.

That is, it is assumed that each DM i processes the complete information structure and votes for

party y ∈ Y maximising their utility,

u(y,Xi, Vi; θu) := β>y Ziy + γ>y Wi + Viy,
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where Ziy := |Zi − Zy| is an M × 1 vector observed by the researcher, representing the distance

between DM i’s opinion (Zi) and party y’s opinion (Zy) onM issues, as measured in some common

M -dimensional ideological metric space. Wi is a vector of individual-specific covariates observed

by the researcher. Xi := (Wi, Ziy : y ∈ Y) collects the ideological distances and the individual-

specific covariates. Vi := (Viy : y ∈ Y) is a vector of tastes of DM i for each party/candidate that

is unknown to the researcher and independent of Xi, whose distribution belongs to a parametric

family, thereby outlining a (Multinomial) Logit model, Probit model, Nested Logit model, etc. If

voters vote ideologically, then each βy is expected to be negative so that DM i’s utility declines

with increasing distance between Zi and Zy. θu := (βy, γy : y ∈ Y) is the vector of payoff

parameters.

The above framework is scientifically appealing because of its elegance and simplicity but

it has limitations. Importantly, uncertainty affects voting (Matĕjka and Tabellini, 2021, and

other references in Section 1). That is, voters may be unsure about their own and the parties’

ideological positions and, more generally, about the qualities of the candidates. This is because

of the inevitable difficulty of making precise political judgments and understanding associated

returns, or because the parties deliberately obfuscate information to attract voters with different

preferences and expand electoral support. More plausibly, in the wake of election campaigns,

voters are conscious of their own and the parties’ attitudes towards some popular issues, but

might be uncertain about how they themselves and the parties stand towards more technical or

less debated topics, and about the traits of the candidates other than those publicly advertised.

Further, they may attempt to fill such gaps in information with various degrees of success and in

different ways, depending on a priori inclination for certain parties, political sentiments, interest

in specific issues, civic sense, attentional limits, participation in townhall debates, candidates’

transparency, opinion makers, and media exposure. In turn, some individuals might become much

more informed, others less, giving rise to heterogeneity in the public understanding of politics.

Despite the acknowledgement of the central role played by the sophistication of voters in

determining voting patterns, only a few empirical works have attempted to take it into account

while estimating a spatial voting framework. This has been done, for instance, through an additive,

exogenous, and parametrically distributed error in the payoffs representing the evaluation mistakes
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made by voters, a parametric specification of the variance of the perceived party position across

voters, or a parametric specification of the probability of being informed versus uninformed when

voting (Degan and Merlo, 2011, and other references in Section 1). By contrast, our methodology

permits us to incorporate uncertainty under weak assumptions on the latent, heterogeneous, and

potentially endogenous process followed by voters to gather and evaluate information.

In particular, we assume that, when assessing the returns to voting for party y ∈ Y , DM i is:

- Aware of the distances between their position and party y’s position on highly debated topics

(for instance, EU integration). These distances are captured by the vector Ziy := |Zi − Zy|.

- Potentially uncertain about their tastes towards party y’s opinion on more complicated and less

media-covered issues (for instance, public expenditure management and reactions to pandemics)

and towards the candidates’ qualities that have been less advertised (for instance, disclosure of

assets, liabilities, and any conflict of interests). These tastes are captured, in some aggregate

way, by the vector Vi := (Viy : y ∈ Y). DM i has a prior on Vi. Further, DM i has access to a

learning technology that allows them to become more informed about Vi.

We follow the literature on voting under uncertainty which typically models priors as normal

distributions (Knight and Schiff, 2010; Matĕjka and Tabellini, 2021; Yuksel, 2022). In particular,

we assume that Vi is distributed as a standard normal, independent of Xi. See also Feddersen

and Pesendorfer (1997) and McMurray (2013) on the use of the common prior assumption and

Bayesian rationality in models of voting. Lastly, we consider abstention as the base category and

normalise its payoff to zero as, for example, in Knight and Schiff (2010).

5.2 Data

We estimate our model by using data on the UK general election held on 8 June 2017. Specifically,

we use data from the British Election Study, 2017: Face-to-Face Post-Election Survey (Fieldhouse,

et al., 2018). The survey took place immediately after the election. It asks questions concerning

key contemporary problems about political representation, accountability, and engagement, and

aims to explain changes in party support. The interviewees constitutes an address-based random

probability sample of eligible voters living in 468 wards in 234 Parliamentary Constituencies across
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England, Scotland, and Wales.

We believe that such data fit the framework described in Section 5.1 for four main reasons.

First, the UK parties were clearly focused on the topic of Brexit, along with issues of public health

and austerity, thus inducing potential uncertainty among voters with respect to many other factors

(Hutton, 2017; Snowdon and Demianyk, 2017). Second, the UK political scene is dominated by

historical parties. Hence, past election outcomes and consequent behaviour of parties can justify

the common prior assumption on Vi. Third, the survey reports the positions of the respondents

on topics that were debated at length before the election, which we discuss more precisely below.

The survey also asks respondents to state the parties’s positions with respect to those topics

and the answers provided are substantially aligned. This suggests that there was no uncertainty

among voters on those topics. Hence, they can be used to construct the vector Ziy for each party

y ∈ Y , whose realization is assumed to be in the information set of voters. The survey does

not contain data on other relevant factors that might have induced uncertainty among voters.

Hence, it is natural to treat the realization of Vi as unobserved by the researcher. Fourth, the

survey asks respondents to declare if they voted tactically. Only 2.16% of the respondents answer

affirmatively. We drop them from our final sample, in order for the assumption that voters vote

ideologically to apply.

To limit the impact of Scottish and Welsh independentist fronts on our results, we focus on the

respondents who reside in England. We consider the answers of respondents on which party they

have voted for among the Conservative Party, Labour Party, Liberal Democrats, United Kingdom

Independence Party (UKIP), Green Party, and none.

We collect in Ziy the distances between DM i’s position and party y’s position on four di-

mensions: EU integration, taxation and social care, income inequality, and left-right political

orientation. More precisely, we select the answers of the respondents to the following questions

(summarised with respect to the original version, for brevity):

1. [EU integration]: On a scale from 0 to 10, do you think that Britain should do all it can to

unite fully with the European Union (0), or do all it can to protect its independence from

the European Union (10)? Also provide the positions of the parties on the same scale.

2. [Taxation and social care]: On a scale from 0 to 10, do you think that government should cut
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taxes a lot and spend much less on health and social services (0), or that government should

raise taxes a lot and spend much more on health and social services (10)? Also provide the

positions of the parties on the same scale.

3. [Income inequality]: On a scale from 0 to 10, do you think that government should make

much greater efforts to make people’s incomes more equal (0), or that government should be

much less concerned about how equal people’s incomes are (10)? Also provide the positions

of the parties on the same scale.

4. [Left-right political orientation] Where would you place yourself on a scale from 0 to 10 where

0 denotes left political attitudes and 10 denotes right political attitudes? Also provide the

positions of the parties on the same scale.

Following the literature (Alvarez and Nagler, 1995; 1998; 2000; Alvarez, Nagler, and Bowler,

2000), we set party y’s position on dimensions 1-4 equal to the median placement of the party

on each dimension across the sample, although as noticed above there is substantial alignment

among the respondents’ answers.

We collect in Wi some demographic characteristics of respondents. In particular, we focus on

gender, socio-economic class, and total income before tax. Recall that γy captures the impact

of Wi on the vote shares. We allow this impact to be heterogeneous across the parties. To be

parsimonious on the number of parameters to estimate, we further parameterise γy by requiring

that γy := γZLR
y for every party y, where ZLR

y is the position of party y with regards to left-right

orientation. In other words, we assume that the aforementioned heterogeneity is driven by the

position of each party in the left-right political spectrum. Similarly, to reduce dimensionality, we

impose βy := β for each party y.

In our final sample, 36.48% of people have voted for the Labour Party, 36.65% for the Conser-

vative Party, 6.41% for the Liberal Democrats, 1.73% for UKIP, 1.56% for the Green Party, and

17.17% did not vote. Table 4 presents some descriptive statistics. The second column refers to

the positions of the respondents on dimensions 1-4 and reports the mean (rounded to the near-

est integer), median, and standard deviation across the sample. The remaining columns reports

Zy for each party y. As expected, the Conservative Party and UKIP are more right-wing, less
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concerned with income inequality, more Eurosceptic, and stronger supporters of low taxes and a

minimal welfare state, than the Labour Party and the Green Party. The Liberal Democrats are

more centrist.

Self Conservative Labour Lib. Dem. UKIP Green
(Mean, Median, St.Dev.)

EU 5 5 3.355 7 4 3 10 3
Social care 7 7 2.051 5 7 6 4 6
Inequality 4 4 2.743 6 3 4 5 3
Left-right 5 5 2.059 8 2 5 9 3

Table 4: Descriptive statistics on the ideological positions.

The sample is gender balanced, with 48.97% of males and 51.03% of females. We assign label

1 to females and 0 to males. In the original data, the socio-economic class is divided into seven

categories, following the Standard Occupation Classification 2010: professional occupations; man-

agerial and technical occupations; skilled occupations - non-manual; skilled occupations - manual;

partly skilled occupations; unskilled occupations; armed forces. To lessen the computational

burden, we reorganise these categories into three groups. The first group is assigned label 0

and collects professional occupations, managerial and technical occupations, skilled occupations -

non-manual, and armed forces (68.04% of the sample). The second group is assigned label 1 and

collects skilled occupations - manual and partly skilled occupations (29.42% of the sample). The

third group is assigned label 2 and collects unskilled occupations (2.54% of the sample). Similarly,

in the original data, the total income before tax is bracketed into 14 categories. We reorganise

these categories into four groups, which we construct by approximately following the UK income

tax rates. The first group is for income between £0 and £15, 599 (21.78% of the sample). The

second group is for income between £15, 600 and £49, 999 (51.68% of the sample). The third

group is for income between £50, 000 and £99, 999 (21.45% of the sample). The fourth group

is for income above £100, 000 (5.09% of the sample). To each of the four groups, we assign as

value the logarithm of the median income across the respondents belonging to that group (9.4727,

10.4282, 11.1199, and 12.6115, respectively). We summarise these numbers in Table 5.
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Gender Socio-economic class Income (in log)

Males (0): 48.97% First group (0): 68.04% First group (9.4727): 21.78%
Females (1): 51.03% Second group (1): 29.42% Second group (10.4282): 51.68%

Third group (2): 2.54% Third group (11.1199): 21.45%
Fourth group (12.6115): 5.09%

Table 5: Descriptive statistics on the demographic characteristics.

5.3 Results

We estimate the identified set of the 1 × 7 vector θ0 := (β0, γ0) by evaluating a grid of 100,000

parameter values. The grid is constructed by exploring the parameter space, Θ ⊆ R7, via the

simulated annealing algorithm.15

To decide the order of the Bernstein polynomials, we take Kd constant across d = 1, . . . , D

and consider Kd = 3, 5, 7, 10. D = 5 because there are five parties and the payoff from abstention

is normalised to zero. For each of these four values of Kd, we construct an estimate of Θ∗, Θ̂∗,

by replacing the empirical choice probabilities in (6) with their sample analogues and solving (6)

for every realization x of Xi and parameter value θ in the grid. Table 6 reports the projections of

Θ̂∗. As seen in Section 4, the width of the bounds tends to increase weakly with Kd. The bounds

become approximately stable from Kd = 5 onwards. Therefore, in our next computations, we set

Kd = 5 for d = 1, . . . , D.

Kd β1 β2 β3 β4 γ1 γ2 γ3
d = 1, . . . , D EU Social care Inequality Left-right Gender Class Income

3 [−0.3512, 0.0055] [−0.0823, 0.0172] [−0.1078, 0.0000] [−0.3221, 0.0003] [−0.3876, 0.3952] [−0.2483, 0.1134] [−0.1965, 0.4387]
5 [−0.3844, 0.0827] [−0.1105, 0.0818] [−0.1345, 0.0000] [−0.3948, 0.0084] [−0.4103, 0.4142] [−0.2895, 0.1712] [−0.2151, 0.4614]
7 [−0.3844, 0.0829] [−0.1105, 0.0820] [−0.1345, 0.0000] [−0.3949, 0.0084] [−0.4103, 0.4142] [−0.2897, 0.1712] [−0.2151, 0.4614]
10 [−0.3844, 0.0829] [−0.1105, 0.0823] [−0.1345, 0.0000] [−0.3949, 0.0084] [−0.4105, 0.4142] [−0.2897, 0.1712] [−0.2151, 0.4614]

Table 6: Projections of Θ̂∗ for different orders of the Bernstein polynomials.

Table 7 provides some computational details, as in Table 1 of Section 4. In particular, the

fourth column shows the average CPU time to assess if (6) has a solution for a given (x, θ), using
15In the case of a high-dimensional vector of parameters, it is common in the partial identification literature to

construct the grid of parameter values by using the simulated annealing algorithm (Ciliberto and Tamer, 2009).
In particular, we proceed in four steps. First, we estimate θ0 by maximum likelihood under the assumption that
all DMs process the complete information structure and obtain the estimate θ̂com. Second, we construct an Halton
set of 106 points around θ̂com. We draw 100 points at random from this set. We stack these points, together with
θ̂com, in an 101 × 7 matrix, A. Third, we minimise the test statistic TSn(θ) defined in Appendix E with respect
to θ by running the simulated annealing algorithm from each row of A as starting point and experimenting at
different temperatures. We save every parameter value encountered in the course of the algorithm. We stack all
the saved parameter values in a matrix G. Fourth, we draw 100,000 rows at random from G. Such 100,000 rows
constitute our final grid of candidate parameter values.
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the MOSEK solver for Matlab. The CPU time includes the calculation of the integrals {γy,y
′,x

1,k,K (θ)}

by Monte Carlo integration, taking 102 random draws from the standard Normal distribution. The

last column of Table 7 reports the rough total CPU time to construct Θ̂∗ based on exploiting 800

parallel workers from a computing cluster.

Kd, d = 1, . . . , D Order polynomial Unknowns in (6) CPU time per (x, θ) Total CPU time
K := (Kd + 1)D (D + 1)K

3 1,024 6,144 0.036 s 2 h
5 7,776 46,656 0.281 s 12 h
7 32,768 196,608 1.191 s 2 d
10 161,051 966,306 6.025 s 10 d

Note: D = 5. The CPU time per (x, θ) includes the calculation of {γy,y
′,x

1,k,K (θ)} using 102 random draws from
the standard Normal distribution. The total CPU time is based on 800 parallel workers, a grid of 100,000
candidate values of θ, and 1,174 possible realizations of Xi.

Table 7: CPU time across different orders of the Bernstein polynomial.

θ̂com Ccom
0.95 Θ̂∗ C0.95

β1 EU −0.0770 [−0.0998,−0.0541] [−0.3844, 0.0827] [−0.5858, 0.0827]
(0.0117)

β2 Social care −0.0064 [−0.0402, 0.0274] [−0.1105, 0.0818] [−2.1726, 0.6404]
(0.0173)

β3 Inequality −0.0342 [−0.0613,−0.0070] [−0.1345, 0.0000] [−0.6414, 0.0000]
(0.0138)

β4 Left-right −0.1507 [−0.1782,−0.1232] [−0.3948, 0.0084] [−3.7394, 0.0086]
(0.0140)

γ1 Gender −0.0071 [−0.0248, 0.0107] [−0.4103, 0.4142] [−0.4142, 0.9715]
(0.0091)

γ2 Class −0.0461 [−0.0626,−0.0296] [−0.2895, 0.1712] [−0.2901, 0.1869]
(0.0084)

γ3 Income 0.0044 [0.0028, 0.0060] [−0.2151, 0.4614] [−0.2172, 0.4618]
(0.0008)

Table 8: Inference results.

Table 8 presents the inference results. In particular, the second and third columns report the

maximum likelihood estimate of θ0 (θ̂com) and 95% confidence intervals (Ccom
0.95), respectively, under

the assumption that all DMs process the complete information structure. The third and fourth

columns report the projections of Θ̂∗ and of the 95% confidence region for any θ ∈ Θ∗ (C0.95),

respectively. C0.95 is constructed following Andrews and Shi (2013), as outlined in Appendix E,

based on 50 bootstrap samples.
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Under the assumption that voters are fully informed, all the β coefficients, except β2, are

statistically different from zero at 5%. This suggests that DMs vote ideologically on the EU,

inequality, and left-right dimensions. That is, the smaller the distance between DM i and party

y’s ideological positions on those dimensions, the more likely DM i votes for party y, ceteris

paribus. Further, β4 has the highest absolute value magnitude among the β coefficients. That

is, voters particularly disvalue casting their votes in favour of a party ideologically distant on the

left-right axis. A one-unit increase in the ideological distance on the left-right axis produces a

payoff decrease that is roughly 2, 23, and 4 times bigger than the payoff decrease produced by

a one-unit increase in the ideological distance on the EU, social care, and inequality dimensions,

respectively.

When we remain agnostic about voter sophistication, all the projections of Θ̂∗ for the β

coefficients include zero. Therefore, differently from above, we cannot reject the possibility that

the election outcomes have been generated under some combinations of information structures

under which the ideological distances on the EU, social care, inequality, and left-right dimensions

are irrelevant for voter preferences. Nevertheless, the model maintains enough identification power

to completely exclude positive values of β3 and almost entirely positive values of β4. This is

roughly confirmed by the projections of C0.95. In particular, β4 can have the highest absolute

value magnitude among the β coefficients, in agreement with the maximum likelihood results.

The fact that this finding on β4 is robust to the restrictions on the information environment

reflects several post-election descriptive studies run by political experts, which emphasise that

the traditional left-right values, rather than specific policy issues, have been the main driver of

the British electoral behaviour in 2017 (Hobolt, 2018).

The upper bounds of the projections for β1 and β2 are non-negligibly positive. While this aligns

with the non-significance of β2 under the complete information assumption (Ccom
0.95 includes positive

values), it is in contrast with the significance of β1 under the complete information assumption

and the 2017 election being often referred to as the “Brexit election” (Mellon, et al., 2018). Upon

closer inspection, however, the inconclusive results on β1 reflect that the 2017 pre-election period

saw a substantial increase in the relationship between EU referendum choice and Labour versus

Conservative vote choice, with a sort of alignment of the remain-leave axis with the traditional
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left-right axis. The parties with the clearest positions against Brexit (the Liberal Democrats)

and in favour of Brexit (UKIP) lost many supporters. These switched en masse to the Labour

Party, offering a “soft Brexit” and the Conservative Party, offering a “hard Brexit”, respectively

(Mellon, et al., 2018; Heath and Goodwin, 2017). Such a tendency may have dampened the role

of the distance in the Brexit sentiment in determining the preferences of voters, an insight that

is not picked up under the complete information assumption.

5.4 Counterfactuals

Information provision. The uncertainty about the payoffs resulting from voting can occur

due to deliberate strategies of the candidates who “becloud” their characteristics and opinions “in

a fog of ambiguity” (Downs, 1957, p.136), in order to expand the electoral support by attracting

groups of voters with different political preferences (Campbell, 1983; Dahlberg, 2009; Tomz and

van Houweling, 2009; Somer-Topcu, 2015). It remains unclear, however, to what extent such

uncertainty affects the vote shares and, in turn, the election results. A better understanding is

important for designing transparency policies that can improve citizens’ welfare and parties’ well-

being. We investigate this question by imagining an omniscient mediator who implements a policy

that gives voters complete information. This can be achieved, for instance, by organising school

campaigns that develops political literacy; forcing candidates to publicly disclose their assets,

liabilities, and criminal records; and enforcing a strict regulation regarding campaign spending

and airtime.16 We simulate the counterfactual vote shares under complete information and study

how they change compared to the factual scenario.

This question has been largely debated in the literature. As explained by Bartels (1996),

political scientists have often answered it by arguing that a large population composed of possibly

uninformed citizens acts as if it was fully informed, either because each voter uses cues and

information shortcuts helping them to figure out what she needs to know about the political

world; or because individual deviations from fully informed voting cancel out in a large election,

producing the same aggregate election outcome as if voters were fully informed. Carpini and

Keeter (1996) and Bartels (1996) are the first studies to use quantitative evidence to disconfirm
16See, for example, Niemi and Junn (1998), Hooghe and Wilkenfeld (2007), and Pontes, Henn, and Griffiths

(2019) on the impact of civic education on political engagement.
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such claims. They simulate counterfactual vote shares under complete information using data on

the level of information of the survey respondents as rated by the interviewers or assessed by test

items. Degan and Merlo (2011) propose an alternative approach, which is closer to ours. They

consider a spatial model of voting with latent uncertainty. Differently from us, they estimate such

a model by parametrically and exogenously specifying the probability that a voter is informed.

They use their estimates to obtain counterfactual vote shares under complete information and

find that making citizens more informed about electoral candidates decreases abstention. We

contribute to this thread of the literature by providing a way to construct counterfactual vote

shares under complete information, which neither requires the difficult task of measuring voters’

level of information in the factual scenario, nor imposes parametric assumptions on the probability

that a voter is informed.

Recall from Proposition 3 that, given a realization x of Xi and a parameter value θ, Ψ`(y|x; θ)

and Ψ`(y|x; θ) are the minimum and maximum counterfactual probabilities of choosing alter-

native y ∈ Y when the DMs face the augmented decision problem {G(θ, x), S†}, where S† is

some unknown expansion of the information structure S implemented by the policy program,

possibly heterogeneous across DMs. In the case analysed, S is the complete information struc-

ture and, hence, S† = S for each DM. Moreover, observe that, when all DMs process the

complete information structure, there is a unique model-implied choice distribution. Therefore,

Ψ`(y|x; θ) = Ψu(y|x; θ) := Ψ(y|x; θ). In light of all this, we compute

∆̂∗y := ∪
θ∈Θ̂∗

∑
x

(Ψ(y|x; θ)−P̂Y (y|x))P̂X(x) and ∆̂∗y,0.95 := ∪θ∈C0.95

∑
x

(Ψ(y|x; θ)−P̂Y (y|x))P̂X(x),

for each y ∈ Y , where P̂Y (y|x) and P̂X(x) are the sample probability of choosing y conditional on

x and the sample probability of x, respectively. ∆̂∗y and ∆̂∗y,0.95 are the estimated gains/losses in

vote shares under complete information compared to the factual scenario.

Table 9 reveals that, when voters are fully informed, abstention drops with respect to the

factual scenario. This shows that voters are more confident in choosing a party and aligns with

the empirical results in Degan and Merlo (2011). We also find that the “losers” from the policy

intervention are the two biggest parties, i.e., the Conservative Party and the Labour Party. Con-

versely, the “winners” from the policy intervention are the other minor parties, i.e., the Liberal
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Democrats and the Green Party. This suggests that there exists some payoff-relevant information

unobserved by voters, and the historically dominant parties in the British political scene benefit

the most from such uncertainty.17

∆̂∗y ∆̂∗y,0.95

Abstention [−0.1591,−0.0350] [−0.1654,−0.0020]
Conservative [−0.1722,−0.1293] [−0.1722,−0.0190]
Labour [−0.2316,−0.1716] [−0.3317,−0.1211]
Lib. Dem [0.1234, 0.1673] [0.0857, 0.2507]
UKIP [−0.0173, 0.2358] [−0.1389, 0.3559]
Green [0.1458, 0.1781] [0.0469, 0.2056]

Table 9: Gains/losses in vote shares under complete information compared to the factual scenario.

Lastly, we quantify the voters’ maximum welfare cost of limited information, based on (10).

In particular, we compute

Ŵ ∗ := ∪
θ∈Θ̂∗∆Eθ and Ŵ ∗

0.95 := ∪θ∈C0.95∆Eθ,

where

∆Eθ :=
∑
x

[ ∫
V
u
(
argmaxy∈Yu(y, x, v; θ), v

)
PV (v)dv

−
∫
V
u
(
argmaxy∈Y

∫
V
u(y, x, v; θ)PV (v)dv, v

)
PV (v)dv

]
P̂X(x),

Table 10 highlights that up to 1.1697 utility points would be gained, on average, if all voters

were perfectly informed. We interpret this utility increase by translating it into the corresponding

change in a specific covariate. For example, consider Zi4 and take the estimated lower bound of its

coefficient, β4, which is −0.3948, as shown in Table 8. A utility increase of 1.1697 is equivalent to

the utility gain achieved by reducing the ideological distance from a given party on the left-right

dimension by approximately 1.1697/0.3948 ≈ 3 points.
17The observed drop in abstention is not a mechanical effect of the normalisation to zero of the payoff from

not voting. This is because the observed realization of Viy could add to or subtract from the component of the
payoff “observed pre-signal”, β>y Ziy +γ>y Wi. Further, note that it could be that many/all voters in the population
already observe the realization of Vi, in which case we should expect no significant change in the abstention share,
regardless of the normalisation adopted.
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Ŵ ∗ [0, 1.1697]
Ŵ ∗

0.95 [0, 1.2387]

Table 10: Maximum welfare cost of limited information.

Changes in covariates. Various political experts sustain that, while at the beginning of the

2017 election campaign the Conservative Party had a sizeable lead in the opinion polls over

the Labour Party, as the campaign progressed the Labour Party recovered ground because it

strengthened its left ideological position on social spending and nationalization of key public

services (for example, Heath and Goodwin, 2017; Mellon, at al., 2018). To evaluate this, we reset

the Labour Party’s placement on dimension 2 (social care) to be two points less (i.e., 5 instead of

7) and study if the Labour Party’s well-being worsens by looking at the change in its vote shares.

Recall from Proposition 4 that, given a realization x ofXi and a parameter value θ, Φ`(y|x, x†; θ)

and Φu(y|x, x†; θ) are the minimum and maximum counterfactual probabilities of choosing alter-

native y ∈ Y when the DMs face the augmented decision problem {G(θ, x†), S}, where S is the

unknown information structure S processed in the factual scenario, possibly heterogeneous across

DMs, and x and x† are the covariate realizations before and after the intervention, respectively.

Given y denoting the Labour Party, we compute

Λ̂y := ∪
θ∈Θ̂∗

[ ∑
(x,x†)

(Φ`(y|x, x†; θ)− P̂Y (y|x))P̂X(x),
∑

(x,x†)
(Φu(y|x, x†; θ)− P̂Y (y|x))P̂X(x)

]
,

and

Λ̂y,0.95 := ∪θ∈C0.95

[ ∑
(x,x†)

(Φ`(y|x, x†; θ)− P̂Y (y|x))P̂X(x),
∑

(x,x†)
(Φu(y|x, x†; θ)− P̂Y (y|x))P̂X(x)

]
.

Λ̂∗y and Λ̂∗y,0.95 are the estimated gains/losses in the Labour Party’s vote share compared to the

factual scenario. We also calculate the difference between the counterfactual and factual choice

probabilities under the assumption that all voters process the complete information structure:

Λ̂com
y :=

∑
x

(PY (y|x†; θ̂com)− P̂Y (y|x))P̂X(x),

where PY (y|x†; θ̂com) is the counterfactual probability of choosing y conditional on x† under com-
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plete information and θ = θ̂com, obtained using the standard Multivariate Probit formulas.

Λ̂com
y in Table 11 reveals that, when voters are assumed to be fully informed, weakening the

social care position to 5 leads to a decrease in the Labour Party’s vote share. Our results partly

confirm this finding, as Λ̂y and Λ̂y,0.95 mostly lie on the negative real line. This supports the claim

that, by strengthening its left ideological position on the social care dimension, the Labour Party

gained some votes during the election campaign.

Λ̂com
y −0.2283

Λ̂y [−0.3648, 0.0158]
Λ̂y,0.95 [−0.5682, 0.0163]

Table 11: Gains/losses in the Labour Party’s vote share compared to the factual scenario.

6 Conclusions

In this paper, we study identification of preferences in static single-agent discrete choice models

where decision makers may be imperfectly informed about the state of the world. We leverage

the notion of 1BCE by BM16 to provide a tractable characterization of the sharp identified

set. We make three main methodological contributions. First, by reinterpreting our framework

as a 1-player game against nature, we provide insightful comparisons between the identification

power of our framework and several many-player games. Second, we develop a formal procedure to

practically construct the sharp identified set for the payoff parameters when the state of the world

is continuous. Third, we characterize sharp bounds on the counterfactual choice probabilities

when agents receive information about the state of the world via a policy program, which is an

important question in the empirical literature on single-agent decision problems across different

fields. The method developed in this paper is used to estimate a spatial voting model under weak

assumptions on agents’ information about the returns to voting for the 2017 UK general election.

We show the usefulness of our methodology to quantify the consequences of imperfect information

on the welfare of voters and parties.
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A Examples

Example 1. (Additive random utility discrete choice models) Consider the Nested Logit model

with one nest collecting all goods but the outside option. The payoff function, u, is

u(y,Xi, Vi, εi(λ); β, λ) :=


β>Xiy + εi(λ) + λViy if y ∈ Y \ {0},

Vi0 if y = 0,
(A.1)

where i indexes a generic DM, Y := {0, 1, . . . , D}, 0 denotes the outside option, Xiy are DM-

alternative specific covariates, and (εi(λ), Viy) are DM i’s tastes i.i.d. across y and independent

of Xi := (Xi1, ..., XiD−1). The densities of εi(λ) and Vi := (Vi0, ..., ViD−1) are chosen to yield the

familiar Nested Logit market share function, with λ ∈ (0, 1]. The researcher observes the choice

made by DM i and the realization of Xi for a large sample of DMs.

Suppose that DM i observes the realization of (Xi, εi(λ)) but might be uncertain about the

realization of Vi. DM i has a prior on Vi conditional on (Xi, εi(λ)), which is assumed to obey the

Nested Logit parameterisation above. Further, DM i processes an information structure, Si, to

update their prior. Note that this framework reduces to the traditional Nested Logit model under

the additional assumption that each agent in the population processes the complete information

structure. Similar considerations can be made for the (Multinomial) Logit model, Mixed Logit

model, Probit model, etc. �

Example 2. (Risk aversion) Consider a discrete choice model of insurance plans. Specifically,

DM i faces an underlying risk of a loss (for example, a car accident) and can choose among L

insurance plans. The loss event is denoted by Ci, where it takes value 1 if the loss event occurs

and 0 otherwise. Each insurance plan y ∈ Y is characterised by a deductible, Dy, and a premium,

Piy. Further, DM i is endowed with some wealth (Wealthi). The payoff function, u, belongs to
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the CARA family:

u(y, Pi, D,Wealthi, ri, Ci) :=



1−exp[−ri×(Wealthi−Piy−Dy)]
ri

if Ci = 1, ri 6= 0,

1−exp[−ri×(Wealthi−Piy)]
ri

if Ci = 0, ri 6= 0,

Wealthi − Piy −Dy if Ci = 1, ri = 0,

Wealthi − Piy if Ci = 0, ri = 0,

(A.2)

where Pi := (Pi1, ..., PiL), D := (D1, ..., DL), and ri is the coefficient of absolute risk aversion. ri is

often assumed distributed according to some parametric distribution such as the Beta distribution.

The researcher observes the choice made by DM i and the realization of (Pi, D,Wealthi). In some

cases, the researcher also observes the realization of Ci from ex-post data on claims.

Before choosing an insurance plan, DM i is aware of the realization of (Pi, D,Wealthi, ri).

However, DM i does not observe the realization of Ci because it is realised after the insurance

plan choice has been made. Hence, following our general notation, Vi := Ci and (Pi, D,Wealthi, ri)

are the variables in DM i’s information set in addition to the signal. DM i has a prior on Vi

conditional on (Pi, D,Wealthi, ri), which can be assumed to belong to some parametric family.

For instance, one can use a simple Probit model or a more sophisticated Poisson-Gamma model

(for an example of the latter see Barseghyan, Molinari, O’ Donoghue, and Teitelbaum, 2013;

Barseghyan, Molinari, and Teitelbaum, 2016). Further, DM i processes an information structure,

Si, to update their prior. Si incorporates any extra private information on the risky event at the

disposal of DM i, other than their level of risk aversion, and can arbitrarily depend on DM i’s

risk aversion.

Under the additional restriction that each agent processes the null information structure, note

that this framework collapses to the standard risk aversion setting considered in the empirical

literature, where individuals have no extra private information on the risky event. �

Example 3. (Rational inattention) Consider the rational inattention framework by Caplin and

Dean (2015) and Matĕjka and McKay (2015). In that setting, the decision problem has two

stages. In the first stage, DM i optimally chooses an information structure to update their prior.

Although DM i is free to choose any information structure, attention is a scarce resource and
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there is a cost of processing information. As a result, more informative signals are more costly.

Such attentional costs are parameterised in various ways, for example, using the Shannon entropy

(Sims, 2003) and the posterior-separable function (Caplin, Dean, and Leahy, 2019a). Formally,

in the first stage, the DM chooses an information structure S∗ ∈ S such that

S∗ ∈argmaxS:={T ,PT |V }∈S∫
T

∫
V

[
max
y∈Y

ES,tu(y, V )
]
PT |V (t|v)PV (v)dvdt− C(S),

where ES,tu(y, V ) is the expected payoff from choosing y ∈ Y under the posterior induced by

information structure S and signal realization t, and C(S) represents the parameterised attentional

costs associated with the information structure S. Then, in the second stage, the DM observes a

signal realization, t, randomly drawn according to S∗. Lastly, the DM chooses alternative y ∈ Y

maximising ES∗,tu(y, V ).

Note that our model nests the rational inattention framework because it remains completely

silent on how agents choose information structures. In other words, we allow agents to choose

information structures following the rational inattention protocol or any other procedure.

For an empirical counterpart of the rational inattention model, see Csaba (2018) and Brown

and Jeon (2020). A few theoretical papers on rational inattention and, more generally, stochastic

choice also grapple with the identification problem. However, those papers typically require

either to have data on choices for every possible realization of the state of the world (for example,

Caplin and Martin, 2015), or to have data on choices for multiple menus (for example, Lu, 2016;

Lin, 2022).18 These data are rarely available outside of laboratory experiments, especially for

“complex” products as targeted here. Instead, in our framework the state of the world can be

fully observed, partly observed, or fully unobserved by the researcher. Moreover, we assume to

have data on choices for a single menu. In other words, we rely on less rich data. On one hand, this

reduces the sources of identifying power and makes the task of deriving identification arguments

more challenging; on the other hand, it allows for a wider applicability of our methodology.

Lastly, Hébert and Woodford (2018) and Morris and Strack (2019) consider continuous-time
18According to our notation, having data on choices for multiple menus would consist of observing the choices

of agents for multiple sets Y.
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models of sequential evidence accumulation and show that the resulting choice probabilities are

identical to those of a static rational inattention model with posterior-separable attentional cost

functions. That is, there is an equivalence between the information that is ultimately acquired in

some search models and the information acquired in a static model of rational inattention, under a

particular parameterisation of the attentional costs. Therefore, our setting also nests such search

frameworks. �

B Proofs

Proof of Theorem 1. Fix θ ∈ Θ. When V and T are not finite sets, PV and {PT |V (·|v) : v ∈ V}

should be interpreted as densities. As a preliminary step, it is useful to equivalently rewrite

Definition 1 using the distribution of Y conditional on V as unknown, PY |V := {PY |V (·|v) : v ∈ V}.

PY |V is a 1BCE of G(θ) if:

1. It is consistent: ∑
y∈Y

PY |V (y|v)PV (v; θV ) = PV (v; θV ) ∀v ∈ V .

2. It is obedient:

∫
V
PY |V (y|v)PV (v; θV )(u(y, v; θu)− u(y′, v; θu))dv ≥ 0, ∀y′ ∈ Y \ {y}, ∀y ∈ Y .

Observe that the Consistency requirement reduces to ∑y∈Y PY |V (y|v) = 1 for each v ∈ V , which is

necessary for PY |V (y|v) to be a well-defined distribution. Hence, in what follows, we just consider

the obedience constraint.

Let PY |V be a 1BCE of G(θ). We now show that there exists an information structure S :=

{T ,PT |V } ∈ S and an optimal strategy PY |T of {G(θ), S} such that PY |V arises from PY |T . Define

S := {T ,PT |V } such that

T = Y , (B.1)

PT |V (y|v) = PY |V (y|v) ∀(y, v) ∈ Y × V . (B.2)
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Let PY |T be a strategy of {G(θ), S} such that

PY |T (y|t) =


1 if y = t

0 if y 6= t

∀(y, t) ∈ Y2. (B.3)

Observe that

PY |V (y|v) =
∑
t∈Y

PY |T (y|t)PT |V (t|v) = PY |V (y|v) ∀(y, v) ∈ Y × V , (B.4)

where, in the first equality, we combine the formula of conditional probabilities with (B.1) and

the fact that Y is independent of V conditional on T . In the second equality, we use (B.3) and

(B.2). From (B.4), we conclude that PY |V arises from PY |T . We need to show that PY |T is an

optimal strategy of {G(θ), S}. This is the case if

∫
V
PV |T (v|y)u(y, v; θu)dv ≥

∫
V
PV |T (v|y)u(y′, v; θu)dv, (B.5)

for each y′ ∈ Y \ {y} and for each y ∈ Y . Using the formula of the posterior probability, (B.5) is

equivalent to

∫
V
PV (v; θV )PT |V (y|v)u(y, v; θu)dv ≥

∫
V
PV (v; θV )PT |V (y|v)u(y′, v; θu)dv, (B.6)

for each y′ ∈ Y \ {y} and y ∈ Y . Further, by (B.2), (B.6) is equivalent to

∫
V
PV (v; θV )PY |V (y|v)u(y, v; θu)dv ≥

∫
V
PV (v; θV )PY |V (y|v)u(y′, v; θu)dv, (B.7)

for each y′ ∈ Y \ {y} and y ∈ Y . Lastly, observe that (B.7) holds by the Obedience requirement.

Therefore, PY |T is an optimal strategy of {G(θ), S}.

Let PY |T be an optimal strategy of {G(θ), S} for some S ∈ S. We now show that PY |V arising

from PY |T is a 1BCE of G(θ). By the definition of optimal strategy and using the formula of the
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posterior probability, it holds that

∫
V
PV (v; θV )PT |V (t|v)u(y, v; θu)dv ≥

∫
V
PV (v; θV )PT |V (t|v)u(y′, v; θu)dv, (B.8)

for each t ∈ T , y′ ∈ Y \ {y}, and y ∈ Y such that PY |T (y|t) > 0. By pre-multiplying both sides

of (B.8) by PY |T (y|t) and integrating over T , we obtain

∫
T
PY |T (y|t)

∫
V
PV (v; θV )PT |V (t|v)u(y, v; θu)dvdt ≥

∫
T
PY |T (y|t)

∫
V
PV (v; θV )PT |V (t|v)u(y′, v; θu)dvdt,

(B.9)

for each y′ ∈ Y \ {y}. By rearranging integrals, (B.9) is equivalent to

∫
V
PV (v; θV )

∫
T
PY |T (y|t)PT |V (t|v)u(y, v; θu)dtdv ≥

∫
V
PV (v; θV )

∫
T
PY |T (y|t)PT |V (t|v)u(y′, v; θu)dtdv,

(B.10)

for each y′ ∈ Y \ {y}. Using the independence of Y from V conditional on T , (B.10) is equivalent

to ∫
V
PV (v; θV )PY |V (y|v)u(y, v; θu)dv ≥

∫
V
PV (v; θV )PY |V (y|v)u(y′, v; θu)dv, (B.11)

for each y′ ∈ Y \ {y}. Lastly, observe that (B.11) is just the Obedience requirement. Therefore,

PY |V that arises from PY |T is a 1BCE of G(θ).

Proof of Proposition 1. Fix θ ∈ Θ. We show that if PY ∈ Q(θ), then PY ∈ R(θ). If

PY ∈ Q(θ), then, by definition of Q(θ), there exists PY,V ∈ W(θ) such that PY arises from PY,V .

By Theorem 1, it follows that there exists S ∈ S and PY |T ∈ R(θ, S) such that PY,V arises from

PY |T . Thus, PY arises from PY |T . Therefore, by the definition of R(θ), PY ∈ R(θ).

Conversely, we show that PY ∈ R(θ), then PY ∈ Q(θ). First, let R̃(θ) ⊆ R(θ) be the

non-convexified set of model’s predictions under θ while remaining agnostic about information

structures. That is,

R̃(θ) :=
{
PY ∈ ∆(Y) : PY (y) =

∫
V

∫
T
PY |T (y|t)PT |V (t|v)PV (v; θV )dtdtv ∀y ∈ Y ,

PY |T ∈ R(θ, S), S := {T ,PT |V } ∈ S
}
,
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Take PY ∈ R̃(θ). Then, by the definition of R̃(θ), there exists S ∈ S and PY |T ∈ R(θ, S) such

that PY arises from PY |T . By Theorem 1, it follows that there exists PY,V ∈ W(θ) such that PY |T

arises from PY,V . Thus, PY arises from PY,V . Hence, by the definition of Q(θ), PY ∈ Q(θ). Now,

take any K elements from R̃(θ). Denote such elements by P 1
Y ∈ R̃(θ), ..., PK

Y ∈ R̃(θ). Given the

arguments above, it holds that P 1
Y ∈ Q(θ), ..., PK

Y ∈ Q(θ). Moreover, any convex combination of

P 1
Y , ..., P

K
Y belongs to Q(θ) because Q(θ) is convex. Therefore, every PY ∈ R(θ) is also contained

in Q(θ).

We can conclude that R(θ) = Q(θ) for each θ ∈ Θ. This implies Θ∗ = Θ∗∗.

Proof of Proposition 2. Haile, Hortaçsu, and Kosenok (2008) investigate the identification

power of the notion of quantile response equilibrium (QRE) in N -player games with N ≥ 1 and

additively separable shocks. In their Theorem 1, they show that QRE imposes no restrictions on

behaviour. That is, for any systematic payoff and distribution of observed behaviour, there exists

a density of the additively separable unobserved terms entering payoffs such that a QRE generates

the distribution of observed behaviour. When N = 1, the QRE framework reduces to an additive

random utility discrete choice model (Footnote 9, p.184, Haile, Hortaçsu, and Kosenok, 2008).

Hence, we can apply Theorem 1 of Haile, Hortaçsu, and Kosenok (2008) to our model and show

that, when all DMs process the complete information structure, any ũ rationalises the empirical

choice distribution. Formally, for every PY ∈ ∆(Y) and ũ ∈ Ũ , there exists PV ∈ ∆̃(R|Y|) such

that PY = PY ;ũ,PV
. This implies that the projection of Θ∗ on ∆̃(R|Y|) is equal to Ũ and part (a)

holds.19

Galichon and Salanié (2022) study identification in 2-sided matching models with additively

separable shocks. In their Proposition 1, they show that 2-sided matching models are under-

identified. Specifically, for any density of the additively separable unobserved terms entering

payoffs and distribution of observed behaviour, there exists a systematic payoff such that the

model-implied stable match generates the distribution of observed behaviour. The result applies
19Note that part (a) of Proposition 2 also holds in many-player games. Specifically, when N ≥ 2, the QRE

framework can be reinterpreted as a game with incomplete information and Bayesian Nash equilibrium (Footnote
4, p.182, Haile, Hortaçsu, and Kosenok, 2008). In that setting, Theorem 1 of Haile, Hortaçsu, and Kosenok (2008)
shows that, for any systematic payoff and distribution of observed behaviour, there exists a density of the additively
separable unobserved terms entering payoffs such that a Bayesian Nash equilibrium generates the distribution of
observed behaviour.
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also to the 1-sided case of an additive random utility discrete choice model. Hence, we can

apply Proposition 1 of Galichon and Salanié (2022) to our model and show that, when all DMs

process the complete information structure, any PV rationalises the empirical choice distribution.

Formally, for every PY ∈ ∆(Y) and PV ∈ ∆̃(R|Y|), there exists ũ ∈ Ũ such that PY = PY ;ũ,PV
.

See also the Appendix in Berry (1994) for a similar result. This implies that the projection of Θ∗

on Ũ is equal to ∆̃(R|Y|) and part (b) holds.

Proof of Proposition 3. Fix θ ∈ Θ. We redefine the notions of baseline decision problem and

augmented decision problem. Let {G(θ), S} be the baseline decision problem that the DM faces

when processing the baseline information structure S := {T ,PT |V } ∈ S implemented by the policy

program. Let {G(θ), S†} be the augmented decision problem that the DM faces when processing

the expanded information structure S† := {T †,PT †|V } ∈ S obtained as a combination of S and

some S� := {T �,PT �|V } ∈ S. Let Y † denote the DM’s choice in the counterfactual scenario.

An optimal strategy in {G(θ), S†} is a distribution of Y † conditional on (T, T �), PY †|T,T � :=

{PY †|T,T �(·|t, t�) : (t, t�) ∈ T × T �}, such that, for each (t, t�) ∈ T × T �, the DM maximises their

expected utility by choosing any alternative y† ∈ Y featuring PY †|T,T �(y†|t, t�) > 0.

Next, we define a 1BCE of {G(θ), S}. PY †,V,T ∈ ∆(Y × V × T ) is a 1BCE of {G(θ), S} if it

is consistent, i.e., ∑y†∈Y PY †,V,T (y†, v, t) = PV (v; θV )PT |V (t|v) ∀(v, t) ∈ V × T , and obedient, i.e.,∫
V PY †,V,T (y†, v, t)(u(y†, v; θu)− u(k†, v; θu))dv ≥ 0 ∀y† ∈ Y , k† ∈ Y \ {y†}, and t ∈ T .

We now state Theorem 1 of BM16, which still applies to the new setting. This theorem shows

that PY †,V,T is a 1BCE of {G(θ), S} if and only if, for some expansion S† of S, there exists an

optimal strategy of {G(θ), S†} that induces PY †,V,T .

It follows immediately that P∗Y †(h) can be characterised via the union across θ ∈ Θ∗ of the set

of 1BCE PY †,V,T of {G(θ), S}. In particular, (7) is the Consistency constraint, (8) is the Obedience

constraint, and (9) ensures that PY †,V,T is a well-defined distribution.

Proof of Proposition 4. Fix θ ∈ Θ. From Theorem 1 in Bergemann, Brooks, and Morris

(2022), Q∗Y †|x,x†(h) can be characterised via the union across θ ∈ Θ∗ of the set of 1BCE PY,Y †,V |x,x†

of the linked baseline decision problem {G(θ, x), G(θ, x†)}. In particular, (11) is the Consistency

constraint, (12) and (13) are the Obedience constraints for each decision problem, (14) ensures that
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PY,Y †,V |x,X† is a well-defined distribution, and (15) imposes that the factual choice probabilities

are equal to the empirical ones.

C Linear program with observed and unobserved hetero-

geneity

In this section, we readapt (6) to the case where there are discrete covariates X (observed by

the researcher) and discrete heterogeneity ε (unobserved by the researcher) which enter the DM’s

information set together with the signal. For simplicity, we assume that X is independent of (V, ε).

However, note that the computational procedure goes through even when X is not independent

of (V, ε), and so the distribution of (V, ε) is X-specific. Let X and E be the supports of X

and ε, respectively. Let Pε(·; θε) be the distribution of ε, indexed by the structural parameter

θε ∈ Θε. For each e ∈ E , let PV |ε(·|e; θV ) be the distribution of V conditional on ε = e. For a

given θ := (θU , θV , θε) ∈ Θ := ΘU ×ΘV ×Θε, the researcher needs to verify if the following finite-

dimensional linear program has a solution with respect to λ := (λy,x,ek,K : (k, y, x, e) ∈ K×Y×X×E):

Obedience:
∑
k∈K

λy,x,ek,K γy,y
′,x,e

1,k,K (θV , θU ) ≥ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y},∀x ∈ X , ∀e ∈ E ,

Probability requirements: λy,x,ek,K ≥ 0 ∀k ∈ K, ∀y ∈ Y, ∀x ∈ X , ∀e ∈ E ,
∑
y∈Y

λy,x,ek,K = 1 ∀k ∈ K,∀x ∈ X ,∀e ∈ E ,

Data match:
∑
e∈E

∑
k∈K

λy,x,ek,K γe2,k,K(θV ; θε) = PY (y) ∀y ∈ Y,∀x ∈ X ,

(C.1)

where

γy,y
′,x,e

1,k,K (θV , θU) :=
∫
V
ak,K(v)PV |ε(v|e; θV )(u(y, x, v, e; θu)− u(y′, x, v, e; θu))dv,

γe2,k,K(θV , θε) := Pε(e; θε)
∫
V
ak,K(v)PV |ε(v|e; θV )dv.

Note that (C.1) is separable across x ∈ X and, therefore, can be solved separately across x ∈ X .
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D How consideration sets arise in our framework

Let PY |T be an optimal strategy of the augmented decision problem {G,S} as defined in Section

2. Following Caplin, Dean, and Leahy (2019), the DM’s consideration set, C, arises endogenously

from PY |T . In particular, C collects every alternative such that the subset of the signal’s support

inducing the DM to choose that alternative has positive measure:

C ≡ {y ∈ Y :
∫
T
PY |T (y|t)

∫
V
PT |V (t|v)PV (v)dvdt > 0},

Observe that considerations sets can be heterogeneous across agents as we leave the conditional

signal densities unrestricted.

Therefore, this paper also relates to the econometric literature on discrete choice models with

consideration sets. For some recent contributions see, for example, Cattaneo, Ma, Masatlioglu, and

Suleymanov (2020); Dardanoni, Manzini, Mariotti, and Tyson (2020); Abaluck and Adams (2021);

Barseghyan, Coughlin, Molinari, and Teitelbaum (2021); Barseghyan, Molinari, and Thirkettle

(2021); Crawford, Griffith, and Iaria (2021); Dardanoni, Manzini, Mariotti, Petri, and Tyson

(2022). Yet, there is an important difference between the literature on consideration sets and

this paper. The consideration set literature focuses on (partially) identifying the consideration

probabilities and payoffs under the assumption that the DM perfectly knows the payoff generated

by each alternative in their consideration set. Instead, our setting partially identifies the payoffs

(and does not identify the consideration probabilities) while allowing the DM not to be fully

aware of the payoff generated by each alternative in their consideration set. Therefore, the two

frameworks are non-nested and can answer different questions.

E Inference

We enrich the model of Section 2 by assuming that there are discrete exogenous covariates X

with support X which enter the DM’s information set together with the signal, as it is the case

in the empirical application. We assume that the researcher has a sample of i.i.d. observations,

{Yi, Xi}ni=1. Given α ∈ (0, 1), this section illustrates how to construct a uniformly asymptotically
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valid (1−α)% confidence region, C1−α, for any θ ∈ Θ∗. In particular, we suggest to reformulate our

problem using conditional moment inequalities and apply the generalised moment selection pro-

cedure by Andrews and Shi (2013) (hereafter, AS13), as detailed in Appendix B.1 of Beresteanu,

Molchanov, and Molinari (2011) (hereafter, BMM11).

C1−α is obtained by running a test with null hypothesis H0 : θ0 = θ, for every θ ∈ Θ, and

then collecting all the values of θ which are not rejected. For a given θ, the test rejects H0 if

TSn(θ) > ĉn,1−α(θ), where TSn(θ) is a test statistic and ĉn,1−α(θ) is a corresponding critical value.

Thus,

C1−α ≡ {θ ∈ Θ: TSn(θ) ≤ ĉn,1−α(θ)}. (E.1)

The remainder of the section explains how to compute TSn(θ) and ĉn,1−α(θ) for any given θ ∈ Θ.

In order to define the test statistic, TSn(θ), let us first rewrite the linear programming (3)

as a collection of conditional moment inequalities. To do so, we label the elements of Y as

y1, ..., y|Y|−1, y|Y|. We denote by B|Y|−1 i the unit ball in R|Y|−1. For each θ ∈ Θ and x ∈ X , Q(θ, x)

is the set of model-implied choice distributions, PY |X(·|x), conditional on Xi = x. PY |X(·|x) is the

empirical choice distribution conditional on Xi = x.

Proposition E.1. (Conditional moment inequalities) For each θ ∈ Θ, θ ∈ Θ∗ if and only if

E[m(Yi, Xi; b, θ)|Xi = x] ≤ 0 ∀b ∈ B|Y|−1,∀x ∈ X ,

where

m(Yi, x; b, θ) ≡ b>


1{Yi = y1}

...

1{Yi = y|Y|−1}

− max
PY |X(·|x)∈Q(θ,x)

b>


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

 .

�

Proposition E.1 comes from the fact that, following BMM11, one can express the condition

PY |X(·|x) ∈ Q(θ, x) as

b>PY |X(·|x)− sup
PY |X(·|x)∈Q(θ,x)

b>PY |X(·|x) ≤ 0 ∀b ∈ R|Y|, (E.2)
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where the map

b ∈ R|Y| 7→ sup
PY |X(·|x)∈Q(θ,x)

b>PY |X(·|x) ∈ R,

is the support function of Q(θ, x). By exploiting the positive homogeneity of the support func-

tion and some algebraic manipulations, (E.2) is equal to the collection of conditional moment

inequalities listed in Proposition E.1.

Second, we rewrite the conditional moment inequalities in Proposition E.1 as unconditional

moment inequalities. Here, we use Lemma 2 in AS13 which shows that conditional moment

inequalities can be transformed into unconditional moment inequalities by choosing appropriate

instruments, h ∈ H, where H is a collection of instruments and h is a function of Xi. Thus,

θ ∈ Θ∗ ⇔ E[m(Yi, Xi; b, θ, h)] ≤ 0 ∀b ∈ B|Y|−1,∀h ∈ H a.s., (E.3)

where

m(Yi, Xi; b, θ, h) ≡ m(Yi, Xi; b, θ)× h(Xi).

Third, observe that E[m(Yi, Xi; b, θ, h)] evaluated at b ≡ 0|Y|−1 is 0. Therefore, (E.3) is equivalent

to

θ ∈ Θ∗ ⇔ max
b∈B|Y|−1

E[m(Yi, Xi; b, θ, h)] = 0 ∀h ∈ H a.s.

In light of the three steps above, following Appendix B.1 of BMM11, we can use as test statistic

TSn(θ) ≡
∫
H

[√
n max
b∈B|Y|−1

m̄n(b, θ, h)
]2
dΓ(h),

where Γ is a probability measure on H as explained in Section 3.4 of AS13, and

m̄n(b, θ, h) ≡ 1
n

n∑
i=1

m(Yi, Xi; b, θ, h).

Intuitively, TSn(θ) is built by imposing a penalty for each h such that the maximum of E[m(Yi, Xi; b, θ, h)]

across b ∈ B|Y|−1 is different from zero. Moreover, given that the support of Xi is finite, the an-

alyst can replace Γ with the uniform probability measure on X as suggested by Example 5 in
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Appendix B of AS13. That is,

TSn(θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

m̄n(b, θ, x)
]2
, (E.4)

where

m̄n(b, θ, x) ≡ 1
n

n∑
i=1

m(Yi, Xi; b, θ)1{Xi = x}.

Lastly, we compute the critical value, ĉn,1−α(θ), by following AS13’s bootstrap method con-

sisting of the following steps. First, we draw Wn bootstrap samples using nonparametric i.i.d.

bootstrap. Second, for each w = 1, ...,Wn, we compute the recentered test statistic

TSwn (θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

(m̄w
n (b, θ, x)− m̄n(b, θ, x))

]2
, (E.5)

where m̄w
n (b, θ, x) is calculated just as m̄n(b, θ, x), but with the bootstrap sample in place of the

original sample. Third, ĉn,1−α(θ) is set equal to the (1−α) quantile of {TSwn (θ)}Wn
w=1. Once TSn(θ)

and ĉn,1−α(θ) are computed for each θ ∈ Θ (or, in practice, for each θ belonging to a grid), the

confidence region, C1−α, defined in (E.1) can be constructed.

In Appendix E.1 we provide more details on the computation of (E.4) and (E.5). In particular,

we show that computing (E.4) and (E.5) amounts to solving some quadratically constrained linear

programming problems.

E.1 Some computational simplifications

Following MR23, we discuss a way to simplify the computation of the test statistic, TSn(θ), as

defined in (E.4). Observe that, for each x ∈ X and b ∈ B|Y|−1,

m̄n(b, θ, x) = PX(x)b>
(
P̃Y |X(·|x)− max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)
, (E.6)
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where PX is the empirical distribution of Xi, P̃Y |X(·|x) ≡


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

, and P̃Y |X(·|x) ≡


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

.
Therefore, (E.4) is equal to

TSn(θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

b>
(
PX(x)P̃Y |X(·|x)− PX(x) max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)]2
. (E.7)

To compute (E.7), the researcher should calculate, for each x ∈ X ,

max
b∈B|Y|−1

b>
(
PX(x)P̃Y |X(·|x)− PX(x) max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)
,

which is equivalent to

max
b∈B|Y|−1

min
PY |X(·|x)∈Q(θ,x)

b>
(
PX(x)P̃Y |X(·|x)− PX(x)P̃Y |X(·|x)

)
. (E.8)

(E.8) is a max-min problem which can be simplified as follows. Note that the inner constrained

minimisation problem in (E.8) is linear in PY |X(·|x). Thus, it can be replaced by its dual, which

consists of a linear constrained maximisation problem. Moreover, the outer constrained maximi-

sation problem in (E.8) has a quadratic constraint, b>b ≤ 1. Therefore, (E.8) can be rewritten

as a quadratically constrained linear maximisation problem which is a tractable exercise. This is

described in detail below.
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By (6), (E.8) is equivalent to

max
b∈R|Y|−1

min
PY |X (·|x), λ

b>[PX(x)P̃Y |X(·|x)− PX(x)P̃Y |X(·|x)],

s.t. b ∈ B|Y|−1: b>b ≤ 1,

Obedience:
∑
k∈K

λy,xk,Kγ
y,y′,x
1,k,K (θ) ≥ 0 ∀y ∈ Y,∀y′ ∈ Y \ {y},

Probability requirements:λy,xk,K ≥ 0 ∀k ∈ K,∀y ∈ Y,
∑
y∈Y

λy,xk,K = 1 ∀k ∈ K,

Choice probability: PY |X(y|x) =
∑
k∈K

λy,xk,Kγ2,k,K(θV ) ∀y ∈ Y.

(E.9)

We simplify (E.9) by introducing new variables. Let W1 ≡ PX(x)(PY |X(·|x)− PY |X(·|x)). Let

W be the (|Y|+ |Y| ·K)× 1 vector collecting W1 and λ. (E.9) can be rewritten as

max
b∈R|Y|−1

min
W

[
b> 0>1+|Y|·K

]
W,

s.t. b>b ≤ 1,

Aeq W = Beq,

Aineq W ≤ 0dineq ,

(E.10)

where Aeq is the matrix of coefficients multiplying W in the equality constraints of (E.9) with deq

rows, Beq is the vector of constants appearing in the equality constraints of (E.9), and Aineq is the

matrix of coefficients multiplying W in the inequality constraints of (E.9) with dineq rows.

Further, the inner constrained minimisation problem in (E.10) is linear. Hence, by strong

duality, it can be replaced with its dual. This allows us to solve one unique maximisation problem.

Precisely, the solution of (E.10) is equivalent to the solution of

max
b ∈ R|Y|−1

τeq ∈ Rdeq

τineq ∈ Rdineq
+

[
−B>eq 0>dineq

]
τ,

s.t. b>b ≤ 1,

[A>]1:|Y| · τ =

−b
0

 ,
− [A>]|Y|+1:|Y|+|Y|·K · τ ≤ 0|Y|·K ,

(E.11)
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where τ is the (deq +dineq)× 1 vector collecting τeq and τineq, A is the (deq +dineq)× (|Y|+ |Y| ·K)

matrix obtained by stacking one on top of the other the matrices Aeq and Aineq, and [A]i:j denotes

the sub-matrix of A containing the rows i, i+ 1, ..., j of A.

Note that (E.11) is a quadratically constrained linear maximisation problem. In particular,

the first constraint in (E.11) is quadratic. The objective function and the remaining constraints

in (E.11) are linear. Close derivations are discussed in MR23 for an entry game setting.

We now discuss a way to simplify the computation of bootstrap test statistic, TSwn (θ), as

defined in (E.5). Similarly to (E.6), by rearranging terms it holds that

m̄w
n (b, θ, x) = PwX(x)b>

(
P̃wY |X(·|x)− max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)
,

where the superscript “w” denotes the bootstrap probabilities. Therefore,

m̄w
n (b, θ, x)− m̄n(b, θ, x)

= PwX(x)b>
(
P̃wY |X(·|x)− max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)
− P 0

X(x)b>
(
P̃ 0
Y |X(·|x)− max

PY |X(·|x)∈Q(θ,x)
P̃Y |X(·|x)

)
,

= b>
[
PwX(x)P̃wY |X(·|x)− P 0

X(x)P̃ 0
Y |X(·|x)− (PwX(x)− P 0

X(x)) max
PY |X(·|x)∈Q(θ,x)

P̃Y |X(·|x)
]
.

To simplify the notation, let us rename

Awx ≡ PwX(x)P̃wY |X(·|x)− P 0
X(x)P̃ 0

Y |X(·|x),

and

Cw
x ≡ PwX(x)− P 0

X(x).

Therefore, (E.5) is equal to

TSwn (θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

b>
(
Awx − Cw

x max
PY |X(·|x)∈Q(θ,x)

P̃Y |X(·|x)
)]2

. (E.12)

To compute (E.12), the researcher should calculate, for each x ∈ X ,

max
b∈B|Y|−1

b>
(
Awx − Cw

x max
PY |X(·|x)∈Q(θ,x)

P̃Y |X(·|x)
)
,
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which is equivalent to

max
b∈B|Y|−1

min
PY |X(·|x)∈Q(θ,x)

b>
(
Awx − Cw

x P̃Y |X(·|x)
)
. (E.13)

(E.13) can be rewritten as a quadratically constrained linear maximisation problem as done for

(E.8). Once (E.13) is computed for each x ∈ X , the analyst easily obtains TSwn (θ).
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