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E Inference

After having observed that Artstein’s inequalities in expression (6) of the paper are moment
inequalities, inference on Θ?? or Θo can be performed choosing among several available tech-
niques: if X is finite e.g., Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008;
2010), Rosen (2008), Andrews and Soares (2010), Romano, Shaikh, and Wolf (2014), Pakes, et
al. (2015), Bugni, et al. (2016), Bugni, Canay, and Shi (2017), Kaido, Molinari, and Stoye
(2019); if X is not finite e.g., Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013),
Andrews and Shi (2017).

Given α ∈ (0, 1), in what follows we illustrate how to construct a (1− α) confidence region
for each θ ∈ Θo, by using the generalised moment selection procedure in Andrews and Soares
(2010) (hereafter, AS). Equivalent steps can be applied to construct a confidence region for each
θ ∈ Θ??. We assume that X is finite and that the observed networks are i.i.d. For simplicity of
exposition and without loss of generality, we also assume that the observed networks have the
same number, n, of players. Moreover, we focus on scenarios where the players’ identities vary
across the observed networks and the players have no roles.1

First, it is convenient to express Θo as

Θo ≡
{
θ ∈ Θ|H l

g·j ,x(θ) ≤ P(G·j = g·j |X = x) ≤ Hu
g·j ,x(θ) ∀g·j ∈ {0, 1}n−1, ∀j ∈N, ∀x ∈ Xn

}
,

where
H l
g·j ,x(θ) ≡

∫
e·j∈Rn−1 s.t. Sj,θu (x,e·j)={g·j}

dFj(e·j ; θε),
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and
Hu
g·j ,x(θ) ≡

∫
e·j∈Rn−1 s.t. g·j∈Sj,θu (x,e·j)

dFj(e·j ; θε).

This is equivalent to

Θo =
{
θ ∈ Θ|P(G·j = g·j ,X = x)− H̃ l

g·j ,x(θ) ≥ 0,

H̃u
g·j ,x(θ)− P(G·j = g·j ,X = x) ≥ 0 ∀g·j ∈ {0, 1}n−1, ∀j ∈N, ∀x ∈ Xn

}
,

where
H̃ l
g·j ,x(θ) ≡ H l

g·j ,x(θ)P(X = x),

and
H̃u
g·j ,x(θ) ≡ Hu

g·j ,x(θ)P(X = x).

E.1 Preliminary step

A preliminary step is the estimation of P(G·j = g·j ,X = x), H̃ l
g·j ,x(θ), and H̃u

g·j ,x(θ), ∀g·j ∈
{0, 1}n−1, ∀j ∈N, ∀x ∈ Xn, and ∀θ ∈ Θ.

Estimating P(G·j = g·j ,X = x), H̃ l
g·j ,x(θ), and H̃u

g·j ,x(θ), for example via a frequency
estimator, is complicated by the fact that the players’ identities vary across the observed networks
and the players have no roles. In this case, the labels are assigned arbitrarily to the players
within each network. When replacing probabilities with sample analogues, the researcher needs
to ensure that the label assignment does not affect estimates. We achieve that by adding
sufficient conditions such that the probability distribution of G conditional on X is invariant
under permutations of the labels, as suggested by Sheng (2016). This amount to impose joint
exchangeability of networks. More formally, G is jointly exchangeable if

P(G ∈ K|X = x) = P(G ∈ Kϕ|X = xϕ),

for every permutation ϕ of the labels in N, ∀K ⊆ G, and ∀x ∈ Xn, where Kϕ and xϕ are
obtained by applying ϕ respectively to K and x (Kallenberg, 2005).

The procedure is described below in 6 steps.

Step 1 This step imposes sufficient conditions for joint exchangeability of networks, as in
Sheng (2016).

Assumption E.1. (Exchangeability)

a) The finite sequence of random variables {εij}∀(i,j)∈N2 is jointly exchangeable.

b) The finite sequence of random vectors {Xi}∀i∈N is exchangeable.2

c) The equilibrium selection mechanisms adopted by the players in the network formation game
is independent of the players’ labels, i.e., for every permutation ϕ of the labels in N,

P(G ∈ K|X = x, ε = e) = P(G ∈ Kϕ|X = xϕ, ε = eϕ),

2Exchangeability is defined e.g., by Schervish (1995).
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∀K ∈ KG, ∀x ∈ Xn, ∀e ∈ Rn(n−1) a.s., where Kϕ and eϕ are obtained by applying ϕ

respectively to K and e.

Assumption E.1 a) restricts Assumption 2 b) by imposing that the players’ taste shocks
are jointly exchangeable. For example, Assumption E.1 a) is satisfied if {εij}∀(i,j)∈N2 are i.i.d.
Assumption 3 a) is satisfied if εij ≡ αj + φi + ξij ∀(i, j) ∈ N2, with all the components being
i.i.d. Assumption E.1 b) restricts Assumption 2 a) by imposing that the players’ observed
characteristics are exchangeable. Assumption E.1 c) restricts Assumption 2 a) by requiring that
the players coordinate on the selection of an equilibrium independently of their labels. For
example, Assumption E.1 c) is satisfied if the players of the section j game roll a die to select an
outcome from the set of equilibria of the section j game, independently across j. Assumption
E.1 c) is met if the players of the section j game select the outcome providing the highest
total wealth,

∑
i∈N\{j}Gij × uij(·; θu), from the equilibrium set of the section j game, ∀j ∈ N.

Assumption E.1 c) is violated if the players of the section j game select the outcome generating
the highest payoff for player k from the set of equilibria of the section j game, for some j ∈N.

Assumptions 2 and E.1 imply that the observed networks are jointly exchangeable. Indeed,
for every permutation ϕ of the labels in N,

P(G ∈ K,X = x) = P(G ∈ K|X = x)P(X = x)

=

∫
e∈Rn(n−1)

P(G ∈ K|X = x, ε = e)dF (e; θ0
ε )P(X = x)

=

∫
eϕ∈Rn(n−1)

P(G ∈ Kϕ|X = xϕ, ε = eϕ)︸ ︷︷ ︸
Ass. E.1 c)

dF (eϕ; θ0
ε )︸ ︷︷ ︸

Ass. E.1 a)

P(X = xϕ)︸ ︷︷ ︸
Ass. E.1 b)

= P(G ∈ Kϕ|X = xϕ)P(X = xϕ) = P(G ∈ Kϕ,X = xϕ),

∀K ∈KG and ∀x ∈ Xn.
Under Assumptions 2 and E.1, also the observed section 1, ..., section n are jointly exchange-

able. Indeed, for every permutation ϕ of the labels in N,

P(G·j ∈ Kj ,X = x) = P(G·ϕ(j) ∈ K
ϕ
·ϕ(j),X = xϕ), (E.1)

∀j ∈N, ∀Kj ∈K{0,1}n−1 and ∀x ∈ Xn, where Kϕ
·ϕ(j) is obtained by applying ϕ to Kj .3

Step 2 This step shows that, under Assumptions 1, 2, and E.1, it is sufficient to focus on
the section j game for a j ∈ N, rather than ∀j ∈ N. Specifically, it is proved that, under
Assumptions 1, 2, and E.1, Θo = Θo

·j ∀j ∈N, where

Θo
·j ≡

{
θ ∈ Θ|P(G·j = g·j ,X = x)− H̃ l

g·j ,x(θ) ≥ 0,

H̃u
g·j ,x(θ)− P(G·j = g·j ,X = x) ≥ 0 ∀g·j ∈ {0, 1}n−1, ∀x ∈ Xn

}
.

(E.2)

Proof. It can be seen that if θ ∈ Θo, then θ ∈ Θo
·j ∀j ∈ N. Hence, in what follows it is proved

3Notice that, under Assumption E.1 a), ∀j ∈ N, the finite sequence of random variables {εij}∀i∈N\{j} is
jointly exchangeable. This is because any finite subsequence of {εij}∀i,j∈N2 is jointly exchangeable (Proposition
1.12 in Schervish, 1995)
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that, under Assumptions 1, 2, and E.1, if θ ∈ Θo
·j then θ ∈ Θo, ∀j ∈ N. This is the same as

showing that if

H̃ l
g·j ,x(θ) ≤ P(G·j = g·j ,X = x) ≤ H̃u

g·j ,x(θ) ∀g·j ∈ {0, 1}n−1, ∀x ∈ Xn, (E.3)

then

H̃ l
g·h,x

(θ) ≤ P(G·h = g·h,X = x) ≤ H̃u
g·h,x

(θ) ∀g·h ∈ {0, 1}n−1, ∀h ∈N\ {j}, ∀x ∈ Xn, (E.4)

∀θ ∈ Θ and ∀j ∈N.
First, under Assumptions 1, 2, and E.1, it holds that

P(Sj,θu(X, ε·j) ∩Kj 6= ∅,X = x; θ) = P(Sϕ(j),θu(X, ε·ϕ(j)) ∩K
ϕ
·ϕ(j) 6= ∅,X = xϕ; θ), (E.5)

when Kj ≡ {g·j} and Kj ≡ {0, 1}n−1 \ {g·j}, ∀θ ∈ Θ, ∀j ∈ N, ∀g·j ∈ {0, 1}n−1, ∀x ∈ Xn, and
for every permutation ϕ of the labels in N such that ϕ(j) 6= j. Indeed,

P(Sj,θu(X, ε·j) ∩Kj 6= ∅,X = x; θ) = P(Sj,θu(X, ε·j) ∩Kj 6= ∅|X = x; θ)P(X = x)

= P(Sj,θu(x, ε·j) ∩Kj 6= ∅; θ)︸ ︷︷ ︸
Ass. 2 b)

P(X = x)

= P(Sϕ(j),θu(xϕ, ε·ϕ(j)) ∩K
ϕ
·ϕ(j) 6= ∅; θ)︸ ︷︷ ︸

Equilibrium sets independent of players’ labels, Ass. E.1 a)

P(X = xϕ)︸ ︷︷ ︸
Ass. E.1 b)

= P(Sϕ(j),θu(X, ε·ϕ(j)) ∩K
ϕ
·ϕ(j) 6= ∅|X = xϕ; θ)︸ ︷︷ ︸

Ass. 2 b)

P(X = xϕ)

= P(Sϕ(j),θu(X, ε·ϕ(j)) ∩K
ϕ
·ϕ(j) 6= ∅,X = xϕ; θ).

Therefore, combining (E.1) with (E.5) ∀θ ∈ Θ, ∀j ∈ N, ∀Kj ∈ K{0,1}n−1 , and for every
permutation of labels ϕ such that ϕ(j) 6= j, it holds that (E.3) is equivalent to (E.4).

Step 3 Under Assumptions 1, 2, and E.1, the inequalities in (E.2) indexed by the realisations
of (G·j ,X) that are equivalent up to a permutation of the labels in N other than label j are
identical.

Proof. Under Assumptions 1, 2, and E.1, some inequalities in (E.3) are redundant. This is
because, by (E.1) and (E.5), for every permutation ϕ of the labels in N such that ϕ(j) = j,

H̃ l
g·j ,x(θ) ≤ P(G·j = g·j ,X = x) ≤ H̃u

g·j ,x(θ),

is equivalent to
H̃ l
gϕ·j ,x

ϕ(θ) ≤ P(G·j = gϕ·j ,X = xϕ) ≤ H̃u
gϕ·j ,x

ϕ(θ).

∀θ ∈ Θ, ∀g·j ∈ {0, 1}n−1, and ∀x ∈ Xn. Such a result can be shown by mimicking the proof of
Step 2.
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Step 4 Delete from {0, 1}n−1×Xn the realisations of (G·3,X) generating redundant inequal-
ities when applying all the permutations ϕ of the labels in N such that ϕ(3) = 3, as explained
in step 3. Let W⊂ {0, 1}n−1×Xn denote the resulting set. Section E.3 illustrates an algorithm
to construct W. It should be noticed that W is not uniquely defined because one is free to keep
any of the realisations of (G·3,X) producing identical inequalities.

By steps 2 and 3, under Assumptions 1, 2, and E.1, conducting inference on Θo is equivalent
to conducting inference on

Θo
·3 =

{
θ ∈ Θ|P(G·3 = g·3,X = x)− H̃ l

g·3,x(θ) ≥ 0, H̃u
g·3,x(θ)− P(G·3 = g·3,X = x) ≥ 0 ∀(g·3,x) ∈ W

}
,

(E.6)
where the subscript j is fixed to 3 without loss of generality.

Let Cg·3,x ⊂ {0, 1}n−1×Xn be the collection of the realisations of (G·3,X) giving rise to
inequalities identical to the inequalities indexed by (g·3,x) when applying all the permutations
ϕ of the labels in N such that ϕ(3) = 3, as explained in step 3.4 Following Sheng (2016), it is
now proved that, under Assumptions 1, 2, and E.1, (E.6) can be rewritten as

Θo
·3 =

{
θ ∈ Θ|P((G·3,X) ∈ Cg·3,x)− H̃ l

Cg·3,x
(θ) ≥ 0, H̃u

Cg·3,x
(θ)− P((G·3,X) ∈ Cg·3,x) ≥ 0 ∀(g·3,x) ∈ W

}
,

(E.7)
where H̃ l

Cg·3,x
(θ) is the probability that every equilibrium of the section 3 game falls in Cg·3,x

and H̃u
Cg·3,x

(θ) is the probability that at least one equilibrium of the section 3 game falls in
Cg·3,x, given θ ∈ Θ.

Proof. By (E.1), under Assumptions 2 and E.1,

P(G·i = g·i,X = x) = P(G·ϕ(i) = gϕ·ϕ(i),X = xϕ), (E.8)

∀i ∈N, for every permutation ϕ of the labels in N, and ∀(g·i,x) ∈ {0, 1}n−1×Xn.
By (E.8) applied for every permutation ϕ of the labels in N such that ϕ(3) = 3,

P((G·3,X) ∈ Cg·3,x) = |Cg·3,x| × P(G·3 = g·3,X = x). (E.9)

Similarly, H̃ l
Cg·3,x

(θ) and H̃u
Cg·3,x

(θ) can be shown being equivalent to |Cg·3,x| × H̃ l
g·3,x and

|Cg·3,x| × H̃u
g·3,x, respectively.

Hence,{
θ ∈ Θ|H̃ l

Cg·3,x
(θ) ≤ P((G·3,X) ∈ Cg·3,x) ≤ H̃u

Cg·3,x
(θ) ∀(g·3,x) ∈ W

}
=︸︷︷︸

(E.9)

{
θ ∈ Θ||Cg·3,x| × H̃ l

g·3,x(θ) ≤ |Cg·3,x| × P(G·3 = g·3,X = x) ≤ |Cg·3,x| × H̃u
g·3,x(θ)

∀(g·3,x) ∈ W
}

= Θo
·3.

4In network theory, all the realisations of (G·3,X) in Cg·3,x are called isomorphic and Cg·3,x is an equivalence
class for (G·3,X).
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Step 5 This step provides an estimator of P((G·3,X) ∈ Cg·3,x) that does not depend on how
the players are labelled by the researcher, ∀(g·3,x) ∈ W.

Consider any i ∈ N and (g̃·i, x̃) ∈ {0, 1}n−1×Xn such that there exists a permutation ϕ of
the labels in N featuring ϕ(i) = 3 and (g̃ϕ·ϕ(i), x̃

ϕ) = (g·3,x). By (E.8),

P(G·i = g̃·i,X = x̃) = P(G·3 = g·3,X = x). (E.10)

Consider Cg̃·i,x̃ ⊂ {0, 1}n−1×Xn. By (E.8) applied for every permutation ϕ of the labels in N

with ϕ(i) = i,
P((G·i,X) ∈ Cg̃·i,x̃) = |Cg̃·i,x̃| × P(G·i = g̃·i,X = x̃). (E.11)

Hence,

P((G·i,X) ∈ Cg̃·i,x̃) =︸︷︷︸
(E.11)

|Cg̃·i,x̃| × P(G·i = g̃·i,X = x̃) =︸︷︷︸
(E.10)

|Cg̃·i,x̃| × P(G·3 = g·3,X = x)

=︸︷︷︸
|Cg̃·i,x̃|=|Cg·3,x|

|Cg·3,x| × P(G·3 = g·3,X = x) =︸︷︷︸
(E.9)

P((G·3,X) ∈ Cg·3,x).

(E.12)
Let

P̂Cg·3,x,M ≡
1

M

M∑
m=1

[ 1

n

n∑
i=1

1{(G·i,m,Xm) ∈ Cg̃·i,x̃}
]
. (E.13)

From (E.12) and assuming that the observed networks are i.i.d., P̂Cg·3,x,M is a consistent esti-
mator for P((G·3,X) ∈ Cg·3,x) and does not depend on how the labels are assigned.

We suggest the following algorithm to compute 1
n

∑n
i=1 1{(g·i,x) ∈ Cg̃·i,x̃}.

1. Rewrite (g·3,x) by listing:

i) x3.

ii) gh3 ∀h ∈N\ {3} such that gh3 = 1, disposing them with respect to xh in descending
order; if there are (h, k) ∈ N2 with h 6= k 6= 3 such that gh3 = gk3 = 1 and xh = xk,
then any order is allowed.

iii) gh3 ∀h ∈N\ {3} such that gh3 = 0, disposing them with respect to xh in descending
order; if there are (h, k) ∈ N2 with h 6= k 6= 3 such that gh3 = gk3 = 0 and xh = xk,
then any order is allowed.

iv) xh ∀h ∈ N\ {3} according to the disposition of the players adopted in the previous
steps.

2. Call A3 the obtained row of values.

3. ∀i ∈N in the dataset, list:

i) xi.

ii) ghi ∀h ∈ N\ {i} such that ghi = 1, disposing them with respect to xh in descending
order; if there are (h, k) ∈ N2 with h 6= k 6= i such that ghi = gki = 1 and xh = xk,
then any order is allowed.
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iii) ghi ∀h ∈ N\ {i} such that ghi = 0, disposing them with respect to xh in descending
order; if there are (h, k) ∈ N2 with h 6= k 6= i such that ghi = gki = 0 and xh = xk,
then any order is allowed.

iv) xh ∀h ∈ N\ {i} according to the disposition of the players adopted in the previous
steps.

4. Call Ai the obtained row of values, ∀i ∈N.

Hence,
1

n

n∑
i=1

1{(g·i,x) ∈ Cg̃·i,x̃} ≡
1

n

n∑
i=1

1{Ai = A3}.

Step 6 This step provides an estimator of H̃ l
Cg·3,x

(θ) and H̃ l
Cg·3,x

(θ) that does not depend on
how the players are labelled by the researcher, ∀(g·3,x) ∈ W and ∀θ ∈ Θ.

The estimation of H̃ l
Cg·3,x

(θ) and H̃u
Cg·3,x

(θ) can be done via the simple frequency simulator
proposed by McFadden (1989) and Pakes and Pollard (1989). Specifically, ∀m ∈ {1, ...,M} and
∀i ∈ N, RM 5 realisations of the vector of preference shocks ε·i,m are drawn at random from
Fi(·; θε) and the set of equilibria of the section i game is found for each drawn realisation of
ε·i,m.6 Then,

Ĥ l
Cg·3,x,M

(θ) ≡ 1

M

M∑
m=1

[ 1

RM × n

RM∑
r=1

n∑
i=1

1{all equilibria of the section i game
in network m fall in Cg̃·i,x̃

}
]
, (E.14)

and

Ĥ l
Cg·3,x,M

(θ) ≡ 1

M

M∑
m=1

[ 1

RM × n

RT∑
r=1

n∑
i=1

1{at least one equilibrium of the section i game
in network m falls in Cg̃·i,x̃

}
]
, (E.15)

where
1

n

n∑
i=1

1{all equilibria of the section i game
in network m fall in Cg̃·i,x̃

},

and
1

n

n∑
i=1

1{at least one equilibrium of the section i game
in network m falls in Cg̃·i,x̃

},

are computed mimicking the algorithm in step 5.
As done for P̂Cg·3,x,M and assuming that the observed networks are i.i.d., it can be shown

that Ĥ l
Cg·3,x,M

(θ) and Ĥu
Cg·3,x,M

(θ) are consistent estimators for H̃ l
Cg·3,x

(θ) and H̃u
Cg·3,x

(θ) and
do not depend on how the labels are assigned.

5The subscript M reminds that the number of draws of the preference shocks should increase to infinity with
the sample size to avoid not vanishing simulations errors (Ciliberto and Tamer, 2009).

6Section 3.5 of the paper explains how, by Corollary 1, the researcher can avoid checking the equilibrium
conditions for each of the 2n−1 possible realisations of G·i,m for every drawn realisation of ε·i,m.
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E.2 Construction of the confidence region

All the inequalities in (E.7) are stacked in a vector. The sample analogue of their left hand side
- computed using the procedures in steps 5,6 - is denoted from now on by b̄M (θ), with generic
kth element b̄k,M (θ). Let

SM (θ) ≡
∑
k

(
min

{√Mb̄k,M (θ)

σ̂k,M (θ)
, 0
})2

,

where σ̂k,M (θ) is a consistent estimator of the asymptotic standard deviation of
√
Mb̄k,M (θ).

Assumptions 1, 2, and E.1, combined with an i.i.d. sampling scheme and other regularity
conditions discussed by AS, imply that a valid (1− α) confidence region for each θ ∈ Θo is

CSM,1−α ≡
{
θ ∈ Θ | SM (θ) ≤ ĉM,1−α(θ)

}
, (E.16)

where ĉM,1−α(θ) is an estimate of the 1− α quantile of the asymptotic probability distribution
of SM (θ), obtainable following the bootstrap procedure with hard threshold in AS. More details
on the computation ĉM,1−α(θ) are in Section E.4.

E.3 Construction of W

This section illustrates a way to construct the set W⊂ {0, 1}n−1×Xn introduced earlier.

1. Rewrite each realisation (g·3,x) of (G·3,X) ∈ {0, 1}n−1×Xn by listing in a row vector

i) x3.

ii) gi3 ∀i ∈ N\ {3} such that gi3 = 1, disposing them with respect to xi in descending
order; if there are (i, k) ∈ N2 with i 6= k 6= 3 such that gi3 = gk3 = 1 and xi = xk,
then any order is allowed.

iii) gi3 ∀i ∈ N\ {3} such that gi3 = 0, disposing them with respect to xi in descending
order; if there are (i, k) ∈ N2 with i 6= k 6= 3 such that gi3 = gk3 = 0 and xi = xk,
then any order is allowed.

iv) xi ∀i ∈ N\ {3} according to the disposition of the players adopted in the previous
steps.

2. For each row that is repeated once or more, delete all the duplications from the second
occurrence.

3. Collect the saved rows and rearrange each of them in its original order. The resulting set
is W.

As an example, assume n = 3 and X≡ {0, 1}. The set {0, 1}2×X3 is represented in Table
E.1. The realisations of (G·3,X) giving rise to equivalent inequalities have a symbol of the same
colour. Table E.2 reports in blue the rows of Table E.1 reordered according to step 1 above.
It can be noticed that the algorithm described in step 1 detects all the realisations of (G·3,X)

associated to the same colour in Table E.1. Lastly, Table E.3 lists the elements of the set W.
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G13 G23 X1 X2 X3

1 1 1 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1
1 1 0 1 0
1 1 0 0 0
1 0 1 1 1
1 0 1 0 1
1 0 1 1 0
0 0 1 0 0
1 0 0 1 1
1 0 0 0 1
1 0 0 1 0
1 0 0 0 0
0 1 1 1 1
0 1 1 0 1
0 1 1 1 0
0 1 1 0 0
0 1 0 1 1
0 1 0 0 1
1 0 0 0 1
0 1 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0

Table E.1: This table represents the set {0, 1}n−1×Xn when n = 3 and X ≡ {0, 1}. The
realisations of (G·3,X) giving rise to equivalent inequalities have a symbol of the same colour
in the last column.
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G13 G23 X1 X2 X3

1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 0 1 1 1 1
1 1 1 0 0 0 1 1 1 0
1 1 0 1 1 1 1 1 1 0
1 1 0 0 1 1 1 1 0 0
1 1 0 1 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0
1 0 1 1 1 1 1 0 1 1
1 0 1 0 1 1 1 0 1 0
1 0 1 1 0 0 1 0 1 1
1 0 1 0 0 0 1 0 1 0
1 0 0 1 1 1 1 0 0 1
1 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 0 1
0 1 1 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0 0 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 0 1 1
0 0 1 0 1 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 1 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

Table E.2: This table reports the rows of Table E.1 in their original (black) and new (blue) order
according to step 1 of section E.3.

G13 G23 X1 X2 X3

1 1 1 1 1
1 1 1 1 0
0 1 1 1 1
0 1 1 1 0
1 1 1 0 0
0 1 1 0 0
1 1 0 1 1
1 1 0 1 0
0 1 0 1 1
0 1 0 1 0
1 1 0 0 1
1 1 0 0 0
0 1 0 0 1
0 1 0 0 0
1 0 0 1 1
1 0 0 1 0
0 0 0 1 1
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0

Table E.3: This table represents the set Wwhen n = 3 and X≡ {0, 1}.
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E.4 Computation of the critical value

To compute the critical value, ĉM,1−α(θ), proceed as follows.

i) For each k, compute ξk,M (θ) ≡ 1√
log(M)

√
M

b̄k,M (θ)
σ̂k,M (θ) .

ii) For each k, compute ζk,M (θ) ≡

0 if ξk,M (θ) ≤ 1

∞ otherwise
.

iii) Draw BM bootstrap samples.

iv) For b = 1, ..., BM

(a) Compute the sample analogues of the moment inequalities defining Θo together with
a consistent estimator of their asymptotic standard deviations, as done for the original
sample. Denote the results by b̄?k,M,b(θ) and σ̂?k,M,b(θ) for each k.

(b) Compute LM,b(θ) ≡
∑

k

(
min

{√
M(b̄?k,M,b(θ)−b̄k,M (θ))

σ̂?k,M,b(θ)
+ ζk,M (θ), 0

})2
.

v) Define ĉM,1−α(θ) as the (1− α) sample quantile of {LM,b(θ)}Bb=1.

E.5 Construction of the initial grid of parameter values

One difficulty with conducting inference on sets is scanning over a multi-dimensional parameter
space. In practice, what the researcher can do is exploring the parameter space around the
global infimum of SM (θ) in some rational way. For the empirical illustration in this paper, we
follow the simulated annealing method proposed by Ciliberto and Tamer (2009):

i) List many starting values for θ, one of which has all entries equal to zero, others are
constructed using the results of simple probits.

ii) From every starting value for θ, minimise SM (θ) by running the simulated annealing algo-
rithm in Matlab and save each parameter value encountered in the course of the algorithm.

iii) Look at the saved parameter values. This collection is the initial grid of parameter values.

E.6 Monte Carlo exercises

This section reports the results of some Monte Carlo experiments. We consider two payoff
specifications:

ui(G,X, ε; θu) ≡
N∑
j=1

Gij ×
[
β × |Xi −Xj |+ δ ×

N∑
k 6=i

Gkj + εij

]
, (E.17)

with true parameter vector θ0 ≡ (β0, δ0) = (0.8,−0.9) (substitution effects), and

ui(G,X, ε; θu) ≡
N∑
j=1

Gij ×
[
β × |Xi −Xj |+

δ

N − 2
×

N∑
k 6=i

Gkj + εij

]
, (E.18)
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with true parameter vector θ0 ≡ (β0, δ0) = (−0.5, 0.4) (complementary effects). To generate the
data, we impose {Xi}∀i∈N i.i.d., Xi ∼ Unif({0, 1}), εij ≡ uij + ui + uj ∀(i, j) ∈N2, all the taste
shocks i.i.d. standard normal independent of X. Lastly, in case of multiple equilibria, we let
players select one outcome uniformly at random from the equilibrium set of each local game,
independently across local games.

First, we plot the empirical probability distribution of 1
M SM (θ0) for different values of N,M .

In Figure E.1, the three panels are obtained from specification (E.17) by setting N = 3, 10, 20

and M = 100, 200, 400. In Figure E.2, the three panels are obtained from specification (E.18)
by setting N = 3, 10, 20 and M = 100, 200, 400. In all the panels the number of draws of taste
shocks to compute the integrals entering the moment inequalities is set equal to M

2 . As expected,
the empirical probability distribution of 1

M SM (θ0) shrinks around zero as M increases for each
value of N .

Second, we calculate the coverage frequency of θ0 in the 95% confidence region, CSM,0.95.
Specifically, we count the fraction of Monte Carlo experiments such that θ0 belongs to CSM,0.95

over 500 replications, for various values of N and M . Table E.4 is obtained from specification
(E.17) by setting N = 3, 10, 20 and M = 100, 200, 400. Table E.5 is obtained from specification
(E.18) by setting N = 3, 10, 20 and M = 100, 200, 400. The number of draws of taste shocks to
compute the integrals entering the moment inequalities and the number of bootstrap samples to
obtain the critical values are set both equal to M

2 . As expected, the coverage frequency adjusts
to a value greater or equal than 0.95 as M increases for each value of N .
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Figure E.1: The empirical probability distribution of 1
M SM (θ0) is plotted for various values of

N and M . The three panels are obtained from specification (E.17) by setting N = 3, 10, 20 and
M = 100, 200, 400.
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Figure E.2: The empirical probability distribution of 1
M SM (θ0) is plotted for different values

of N,M . The three panels are obtained from specification (E.18) by setting N = 3, 10, 20 and
M = 100, 200, 400.
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M = 100 M = 200 M = 400

N = 3 0.948 0.970 0.974
N = 10 1 1 1
N = 20 1 1 1

Table E.4: This table reports the fraction of Monte Carlo experiments such that θ0 belongs to the 95% confidence region, CSM,95, over 500
replications. The table is obtained from specification (E.17) by setting N = 3, 10, 20 and M = 100, 200, 400.

M = 100 M = 200 M = 400

N = 3 0.942 0.982 0.966
N = 10 1 1 0.994
N = 20 1 1 1

Table E.5: This table reports the fraction of Monte Carlo experiments such that θ0 belongs to the 95% confidence region, CSM,95, over 500
replications. The table is obtained from specification (E.18) by setting N = 3, 10, 20 and M = 100, 200, 400.
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F Empirical application

F.1 Data construction and cleaning

In order to extract and merge the information from the Registro Imprese database, each firm is
uniquely identified by combining its Chamber of Commerce’s territorial province, R.E.A code,
and tax code. The R.E.A. code is a number assigned to each company when enrolling at the
Registro Imprese database and stands for Repertorio Economico Amministrativo. The tax code
is a numeric code of 16 digits.

Each board member is uniquely identified by an individual code, which is an alphanumeric
code of 16 characters, similar to the Social Security Number in the US or the National Insurance
Number in the UK.

In order to merge the information from the Registro Imprese database with that from the
Cerved database, we use the firms’ tax codes.

Industries are constructed by considering the firms’ principal lines of activity provided by the
5 digit-ATECO 2002 code, which is obtained from the Registro Imprese database. The ATECO
2002 code is an alpha-numeric code with varying degrees of detail. It is developed in five levels:
sections (letter), subsections (two letters, optional), divisions (2 digits), groups (3 digits), classes
(4 digits), and categories (5 digits). For example,

• A: Agriculture, hunting and fishing

• 01: Agriculture, hunting and related service activities

• 01.1: Crops

• 01.11: Growing of cereals and other arable crops

• 01.11.1: Growing of cereals (rice included)

• 01.11.2: Growing of oil seeds

• ...

In 2008 the ATECO 2002 code was replaced by the ATECO 2007 code, whose structure preserves
the same general characteristics of its predecessor. However, we use the ATECO 2002 code
because its data quality is remarkably higher for the year 2010.

Industries composed of 1 or 2 firms are dropped because the model requires N ≥ 3.

F.2 Some descriptive statistics

Some descriptive statistics for industry size, total assets, and return on equity are in Table F.1.
Some network summary statistics are in Table F.2.
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Mean Standard deviation Min Max [0.25; 0.50; 0.75] quantiles Skewness Kurtosis
N 6.733 3.483 3 15 [4; 6; 9] 0.812 2.645

TA (×106 AC) 117.281 1, 568.453 0.067 73, 916.239 [6.998; 15.653; 39.984] 41.471 1, 903.552

ROE (%) 1.267 24.589 −128.410 69.820 [−2.382; 2.360; 11.402] −1.600 9.071

Table F.1: This table reports some descriptive statistics for industry size (N), total assets (TA), and return on equity (ROE). All the numbers are
obtained by computing the mean, standard deviation, minimum, maximum, 0.25, 0.50, 0.75 quantiles, skewness, and kurtosis of N , TA, and ROE
within each industry and, then, averaging across industries.

Mean Standard deviation Min Max [0.25; 0.50; 0.75] quantiles Skewness Kurtosis
Density 0.005 0.026 0 0.333 [0; 0; 0] 8.462 88.322

Average degree 0.023 0.096 0 1 [0; 0; 0] 5.905 45.181

% Isolated nodes 97.666 8.758 33.333 100 [100; 100; 100] −4.299 22.587

Number of links 0.163 0.617 0 6 [0; 0; 0] 4.859 32.750

Table F.2: This table reports some descriptive statistics for the density, average degree, percentage of isolated nodes, and number of links of the
networks observed in the data. All the numbers are obtained by computing the mean, standard deviation, minimum, maximum, 0.25, 0.50, 0.75
quantiles, skewness, and kurtosis of the network statistics within each industry and, then, averaging across industries.
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