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Abstract

We examine the empirical content of a large class of dynamic matching models of the labor market
with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning about workers’
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nests and extends known models of job turnover, occupational choice, wage differentials across oc-
cupations, firms, and industries, and wage inequality across workers and over the life cycle. We
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tives that relies on simple extremal quantile regression methods commonly used for static selection
models. Through the lens of the framework we propose, we investigate the ability of standard empir-
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1 Introduction

Matching models of the labor market have been extensively used in both the labor and macro eco-

nomics literature to study a wide range of phenomena, including workers’ occupational choice and

turnover across firms, wage differentials across occupations, firms, and industries, and wage in-

equality across workers and over the life cycle. At their core, these models interpret workers’ career

paths as the outcome of two key processes that take place as labor market experience accumulates:

workers’ acquisition of new human capital and the gradual learning of workers’ true productivity,

which may be unknown to both workers and firms when workers enter the labor market. Both of

these processes lead workers to progressively match with the jobs and firms at which they are most

productive, as workers’ true and perceived productivity evolve over time.

This framework for careers and labor market sorting based on workers’ accumulation of new hu-

man capital and information about ability encompasses many known models: classic ones of human

capital acquisition and wage growth (Mincer, 1958, 1974; Ben-Porath, 1967; Becker, 1975), of learn-

ing and worker turnover (Jovanovic, 1979; Flinn, 1986), of static (Heckman and Honoré, 1990) and

dynamic occupational choice without learning (Keane and Wolpin, 1997) and with learning (Miller,

1984), of the variability of wages across individuals and over time due to learning (Farber and Gib-

bons, 19996; Altonji and Pierret, 2001), and many others that nest or extend these models (Jovanovic

and Nyarko (1997), Gibbons and Waldman (1999a,b), Gibbons et al. (2005), Gibbons and Waldman

(2006), Lange (2007), Nagypál (2007), Antonovics and Golan (2012), Kahn and Lange (2014), and

Pastorino (2024)). For reviews of the literature emphasizing the central role of uncertainty and learn-

ing about workers’ ability in accounting for the dispersion of wages across workers and over the life

cycle, see Gibbons and Waldman (1999a) and Rubinstein and Weiss (2006).

Despite the widespread use of these models to measure the determinants of job mobility and

wage inequality, their empirical content is difficult to establish for three well-understood reasons.

First, workers’ career paths result from a complex process of dynamic selection based on multiple

dimensions of unobservables. As a consequence, wages depend on worker, firm, and job character-

istics that are typically hard to measure, serially correlated, and may endogenously evolve over time

as new human capital and information about ability are acquired through employment. Second, firm,

occupation, and industry choices are by their very nature discrete, leading to the standard identifica-

tion challenge of dynamic discrete choice models with unobserved state variables, which are known

to be nonparametrically underidentified. Third, since workers and firms decide on matches by in-

tertemporally trading off the benefits and costs of alternative job opportunities, wages are typically
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highly nonlinear functions of these unobserved variables, which makes standard methods for inter-

active fixed-effect models inapplicable (Bonhomme et al., 2019; Freyberger, 2018). For instance,

a worker of high ability with low human capital or whose ability is uncertain may prefer employ-

ment at a job at which the worker may not be very productive but that allows the worker to acquire

more human capital or more information about ability, which will lead to higher wages. Then, by

arbitrage, equilibrium wages in a competitive labor market depend on the relative option value of

alternative employment possibilities that provide different human capital and information prospects.

But this option value is typically highest at intermediate levels of human capital and information, at

which additional capital or information may induce a worker and a firm to make different employ-

ment, hiring, or assignment decisions—hence the general nonmonotonicity, and thus nonlinearity,

of wages in unobservables. In these settings, the inference about the sources of inequality is further

complicated by firms’ monopsony power, which has been documented to be large (Seegmiller, 2021;

Lamadon et al., 2022), causing sizable systematic deviations of wages from workers’ productivity.

In this paper, we establish a novel result on the identification of this general class of dynamic

models with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning about

workers’ ability, and firm monopsony power using data on only workers’ jobs and wages. Our argu-

ment relies on simple conditions that accommodate arbitrary patterns of selection on endogenously

time-varying unobservables, are easy to verify, and naturally lead to constructive estimators of model

primitives that are straightforward to implement using common methods for static selection models.

Finally, we estimate a general version of our model on U.S. data and find that it helps reconcile a key

empirical puzzle: why measured sorting is typically very low despite the high degree of observed

wage inequality—an outcome that matching models indeed attribute to sorting.

Formally, we study a broad class of non-stationary dynamic matching models in which a finite

number of heterogeneous firms Bertrand compete for a large pool of workers in each period over

a discrete time horizon of either finite or infinite length.1 Firms differ along three dimensions ob-

served by all: their output technology (how labor produces output), human capital technology (how

on-the-job experience generates more skills), and information technology (how output provides in-

formation about a worker’s unobserved ability). For example, a low-wage “stepping-stone” job at

which a worker is not that productive in terms of current output may allow a worker to acquire much

new human capital or information about ability. Conversely, a “star” job at which a worker is very
1Bertrand price competition provides an appealing modeling approach for markets with differentiated labor inputs

since it places the bargaining power on the “long side” of the market as in any auction-like mechanism, thus allowing
for a nontrivial and flexible sharing of the surplus arising from matches between firms and workers, without the need for
any of the additional parameters that typical bargaining setups require, such as bargaining weights and haggling costs.
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productive may not provide much human capital or information about ability. Workers also differ

in three dimensions: their initial and acquired human capital (both observed by the model’s agents,

with only the initial component observed by the econometrician), efficiency (a latent time-invariant

characteristic observed to model agents but unobserved to the econometrician), and ability (a latent

time-invariant characteristic that is initially unobserved to both model agents and the econometrician

and is gradually learned by model agents as experience accumulates). As standard in the literature,

since human capital, efficiency, and ability stochastically map into output, which is publicly ob-

served, output (“performance”) provides a noisy signal that firms and workers use to update their

beliefs about a worker’s ability.

We characterize the set of Markov perfect equilibria in this setting and show that equilibrium

wages equal the sum of a worker’s expected one-period output at the firm offering the worker the

second-highest expected present discounted value of wages in a period—the second-best firm as in

a second-price auction—and the dynamic value of the foregone opportunity of human capital and

information acquisition at the second-best firm in that period—a compensating differential.We pin

down equilibrium allocations as the solution to a pseudo-planning problem in which the planner

chooses each period a job for a worker among the set of each firm’s preferred assignment.

Econometrically, this framework amounts to a dynamic generalized equilibrium Roy model with

selection on unobservables, namely, the idiosyncratic match-specific productivity shocks affecting

output (time varying and serially uncorrelated); a worker’s efficiency (time invariant “type”); and the

common beliefs about a worker’s ability (time varying, serially correlated, and endogenously evolv-

ing with a worker’s past job choices). A worker’s efficiency and beliefs about ability determine both

a worker’s expected output and the compensating-differential component of wages. As argued, the

latter affect wages nonadditively and potentially nonmonotonically because it captures the difference

in wage returns from tomorrow onward between accepting a job today at the employing firm and at

the second-best firm. As a difference in future values, it represents an endogenous dynamic payoff

that generally depends on all observable and unobservable characteristics of firms and workers.

The econometric literature on the static Roy model provides methods to account for worker

selection on idiosyncratic shocks that affect the wage equation additively or, more generally, mono-

tonically, since this type of selection already arises in the static Roy setting. However, accounting for

selection on the other two classes of unobservables—worker efficiency and evolving beliefs about

worker ability—in the environments we consider requires a different identification strategy.Our strat-

egy augments the standard quantile approach for static Roy models with a mixture approach, which
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accounts for the multiple dimensions of unobservables in our problem. Namely, we first represent

the wage distribution at any firm and time period, conditional on workers’ job history and other ob-

servables, as a mixture over latent worker classes indexed by worker efficiency and by all possible

histories of signals about ability. We then recover the wage distribution of each latent class from

the corresponding mixture component, which is determined by the distribution of the idiosyncratic

shock that governs the selected job and firm. Similarly, we recover the probabilities of these latent

classes from the mixture weights. We can do so under the mild condition that the wage distribution

can be expressed as a finite mixture whose components are (potentially continuous) Gaussian mix-

tures. We refer to this class of distributions as a generalized finite mixture, since finite mixtures of

continuous Gaussian mixtures are known to approximate any distribution arbitrarily well (Bruni and

Koch, 1985; Nguyen and McLachlan, 2019; Aragam et al., 2020). Hence, these mixtures are espe-

cially suited to describe general distributions contaminated by selection that do not admit a regular

parametric shape, as firms’ equilibrium wage distributions are in our settings.

As experience accumulates, the weights of such a mixture distribution capture the probabilities

of the employment histories of workers with different observed and unobserved characteristics, in-

cluding their histories of output signals. By concatenating these weights over time, we can recover

from them not only the initial distribution of key unobserved states—namely, worker efficiency and

the evolving beliefs about worker ability—together with their laws of motion, but also conditional

choice probabilities. With the initial distributions and laws of motion of efficiency and beliefs in

hand, we adapt standard quantile methods from the static Roy literature to recover the distribution of

the “potential wage” at each firm, job, and time period from the identified components of the mixture

described, which are contaminated by selection.

Observe that in the class of models we study, exclusion restrictions do not naturally arise—no

state variable that shifts one component of the model leaves others unaffected. In fact, by interpreting

the wage distribution at each firm and point in time as a mixture—the mixture step of our argument—

it is easy to see that in general any variable that affects mixture components also affects mixture

weights and vice versa. As a consequence, we cannot apply well-known identification strategies for

mixture models that rely on excluded variables (see Henry et al., 2014; Compiani and Kitamura,

2016; Jochmans et al., 2017). In the second quantile step of our argument that addresses selection

on productivity shocks, we face the same difficulty that every state variable affects both wages at all

jobs and job choices. Classical identification arguments for the static Roy model instead leverage

excluded regressors with rich support that shift wages only in one job, so that for some workers,
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their choice of job is independent of their characteristics. Since such regressors are unavailable in

our context, we adapt this “at-infinity” logic by exploiting the rich support of wages, our continuous

outcome of interest. Intuitively, at extreme wage quantiles, idiosyncratic match-specific productivity

shocks dominate the deterministic component of wages in governing a worker’s job assignment.

Namely, for very high values of a job-specific productivity shock, the corresponding job becomes

by far a worker’s best assignment. Hence, conditioning on working in a particular job is essentially

equivalent to conditioning on a tail event of the job-specific shock. By moving from tail probabilities

to quantiles and evaluating quantiles across groups of workers at suitably matched high quantiles,

the contribution of productivity shocks to wages cancels out and we can recover the deterministic

wage component as desired. From it, each firm’s output technology, the compensating differential in

wages, and the distribution of productivity shocks are immediate to back out. All these objects are

key to measuring the impact of sorting on inequality, which is the focus of our empirical exercise.

To this end, the two-step identification approach described yields a natural estimator that inte-

grates standard finite mixture-model methods, such as the fmm routine in Stata, and extreme-quantile

regression methods, such as the eqregsel routine in Stata (D’Haultfoeuille et al., 2020), which

we implement in our empirical exercise. We note that our approach does not require monotonicity

restrictions on endogenous variables, which are common in the dynamic discrete choice literature

when unobserved states are persistent, or assumptions about the dynamics of states, choices, or out-

comes such as “sufficient mobility”, which are common in the empirical literature on sorting.

We use the econometric approach described to measure how labor market sorting affects U.S.

wage inequality. The most widely used empirical framework for this exercise is that of Abowd et al.

(1999)—hereafter, AKM—which decomposes wages into worker and firm fixed effects, observable

covariates, and random shocks. The impact of sorting on wage inequality is then gauged by the

fraction of the total variance of wages attributable to the covariance between worker and firm effects.

Empirical findings based on this framework often suggest a negligible role for sorting, as implied

by the weak correlations between worker and firm effects; see, for instance, Song et al. (2019) and

Card et al. (2013).2 Building on the insights offered by the class of models we study, we argue that

typical AKM estimates of the correlation between firm and worker effects tend to understate it, as

they omit two key forces. First, the compensating-differential term in the wage equation dampens

the direct impact of worker and firm characteristics on wages, as it compensates workers for the

foregone future wage returns associated with the human capital and information they could have
2Bonhomme et al. (2023) show that once AKM estimates are corrected for biases stemming from workers’ limited

job mobility, the correlation between worker and firm effects in general increases.
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acquired by accepting offers from competing firms rather than their chosen firms. For example,

with persistent uncertainty about ability, a high-type worker in a low-output but steep-learning job,

which offers rich training or informative feedback about how well-suited the worker is for the job,

can be paid less than a low-type worker in a high-output but flat-learning job. This force tends

to equalize wages across very different jobs. Second, endogenous matching frictions—such as the

gradual resolution of uncertainty about ability—prevent high-type workers from immediately joining

the most productive firms. For example, workers might temporarily choose less-productive firms that

offer better training opportunities or better prospects to learn about their productivity. But this is at

odds with the presumption that on average workers sort into the most productive matches given their

true time-invariant characteristics—their fixed effect—especially since workers who turn over the

most, who are key for identification, are less experienced ones so most likely to be mismatched.

To empirically validate these theoretical predictions, we provide both simulation-based and em-

pirical evidence. In a Monte Carlo exercise, we simulate an economy that reproduces key features of

our class of models. We choose model parameters so as to match the distribution of wages from the

Panel Study of Income Dynamics (PSID), a representative survey of U.S. households dating back

to 1968, and AKM-type moments from Song et al. (2019) estimated from Social Security Adminis-

tration (SSA) data. Much like in a setting with standard omitted-variable bias, our findings suggest

that when the compensating differential is negative under the true data-generating process—so that

workers match with firms offering jobs with more valuable prospects for human-capital and infor-

mational gains than their competitors—the AKM estimates understate the impact of sorting on wage

inequality, since the omitted compensating differential attenuates the measured output complemen-

tarities between firm and worker characteristics. Conversely, when the compensating differential

is positive—so that workers match with firms offering jobs with less valuable prospects for human

capital and information gains than their competitors—the AKM estimates overstate the impact of

sorting, since the omitted compensating differential amplifies firm-worker complementarities.

Next, we estimate the wage equation implied by our model using U.S. matched employer-

employee data from the Longitudinal Employer-Household Dynamics (LEHD) dataset, which pro-

vides quarterly earnings across 21 U.S. states from the mid 1990s to 2022. Our empirical results cor-

roborate the findings from our simulations. In particular, the AKM estimates of the impact of sorting

on wage inequality are much lower than the estimates implied by our model, which helps resolve

the sorting puzzle. To further support this key finding, we conduct an exercise designed to capture

the global importance of sorting. Specifically, the AKM framework measures sorting solely with
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respect to a worker’s fixed characteristic—the time-invariant efficiency type in our framework. By

contrast, our setting allows workers to sort based on multiple time-varying characteristics—namely,

their beliefs about ability and their accumulated human capital. To measure their importance, we

estimate our model primitives and perform a number of random reallocation exercises that compare

the observed wage distribution to counterfactual ones arising when workers and firms match at ran-

dom with and without uncertainty about ability, learning, and human capital acquisition. Intuitively,

if sorting matters, than these counterfactual wage distributions should exhibit markedly less disper-

sion and concentration at the top whenever workers and firms are not choosing the best matches.

Our findings are consistent with this conjecture, which supports the view that the mechanisms we

consider, especially uncertainty and learning about ability, attenuate standard measures of sorting,

thus playing a potentially important role in explaining the typical findings of AKM exercises.

Literature Review. Our paper is related to a large literature on the estimation of human capital and

learning models, including Heckman (1976), Cunha and Heckman (2008), Buchinsky et al. (2010),

Bagger et al. (2014), and Lamadon et al. (2024); see Gibbons and Waldman (1999a), Rubinstein and

Weiss (2006), and Keane et al. (2017) for reviews. Our work is the first to provide formal identi-

fication arguments for dynamic matching models in which firms are heterogeneous in their output,

human capital, and information technologies and have monopsony power, whereas workers differ in

both observed and unobserved (to model agents and the econometrician) persistent characteristics.

A large literature has also investigated the empirical content of the static Roy model, including

Chamberlain (1986), Heckman (1990), Heckman and Honoré (1990), Ahn and Powell (1993), Das

et al. (2003), Newey (2009), and D’Haultfoeuille and Maurel (2013). Our identification approach

generalizes existing arguments for extreme quantile regression models (Chernozhukov, 2005; Sasaki

and Wang, 2024, 2025) to account for selection on unobservables in dynamic generalized equilibrium

Roy models without excluded covariates. D’Haultfoeuille and Maurel (2013) propose an identifica-

tion procedure for static Roy models with thin-tailed potential outcome distributions. By contrast,

our approach accommodates wage (and log-wage) distributions with fat tails, such as the Pareto,

lognormal, and Cauchy, which is important for plausibly modeling the U.S. wage distribution. For

sample selection in quantile regression models, see Arellano and Bonhomme (2017).

Much work has explored the identification of dynamic discrete choice models with correlated

unobserved states, including Kasahara and Shimotsu (2009), Hu and Shum (2012), An et al. (2013),

Shiu and Hu (2013), Hu et al. (2015), Berry and Compiani (2023), Higgins and Jochmans (2023), and

Higgins and Jochmans (2024). This work either assumes time-invariant unobserved heterogeneity or
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allows for time-varying, serially correlated heterogeneity but only under high-level restrictions on

endogenous variables such as monotonicity, specific distributional supports for unobserved variables

relative to observed variables, or the availability of instruments. None of these conditions applies to

our setting. Thus, we proceed by exploiting information provided by wages—a continuous outcome

typically not used in this literature—which allows us to identify the law of motion of unobserved

state variables as well as conditional choice probabilities.

Our paper is also related to the extensive literature on sorting that builds and extends the AKM

framework. This literature includes works such as Card et al. (2013), Card et al. (2018), Bonhomme

et al. (2019), and Song et al. (2019), as well as studies that highlight the importance of correcting

AKM estimates to address bias due to low mobility, including Abowd et al. (2004), Andrews et al.

(2008, 2012), Kline et al. (2020), and Bonhomme et al. (2023).

Lastly, our paper connects to the literature on the identification of panel-data models with interac-

tive fixed effects without learning (Freyberger (2018)) and with learning Bunting et al. (2024) about

worker characteristics. The wage equation typical of our class of models differs in that unobserv-

ables enter in a potentially nonlinear, nonmonotone, and nonmultiplicative way, which renders the

use of interactive fixed-effect methods infeasible. Moreover, unlike those papers, we allow for dy-

namic selection on multiple unobservables, namely, idiosyncratic productivity shocks (time-varying

and serially uncorrelated), worker efficiency (time invariant), and workers and firms’ beliefs about

worker ability (time-varying, serially correlated, and endogenously evolving with past job choices).

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 provides

an overview of our identification approach. Section 4 presents the formal identification argument

and derives our estimator for the model primitives. Section 5 discusses a Monte Carlo exercise that

illustrates its performance and our empirical application. Appendix A examines extensions to our

framework. Proofs are collected in Appendix D; Appendices E and F offer additional details.

2 Setup

We consider a canonical and broad class of non-stationary dynamic matching models in which a

finite number of heterogeneous firms Bertrand compete for a large pool of workers in each period

over a discrete time horizon of either finite or infinite length. Firms are heterogeneous along three

dimensions, observed by both sides: their output technology (how labor produces output), human

capital technology (how on-the-job experience generates more skills), and information technology

(how output provides information about a worker’s unobserved ability). Workers are also hetero-
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geneous in three dimensions: their initial and acquired human capital (both observed by firms and

workers, with only the initial component observed by the econometrician), their efficiency (a time-

invariant characteristic observed by firms and workers but unobserved by the econometrician), and

their ability (a time-invariant characteristic that is initially unobserved by firms, workers, and the

econometrician, and is gradually learned by firms and workers as experience accumulates). Once

matched, the firm–worker pair produces output and human capital accumulates. As standard in the

literature, since human capital, efficiency, and ability stochastically map into output, which is pub-

licly observed, output (“performance”) provides a noisy signal that firms and workers use to update

their beliefs about a worker’s ability. In the following period, firms post wages anticipating these

dynamics, workers choose among offers given their updated state, and the cycle repeats.

This class of models nests many existing frameworks used in both the labor and macroeconomic

literature to study the determinants of occupational choice, worker turnover, firm-worker sorting,

wage growth, and wage inequality. See Section 1 for key references.

Some Notational Guidance. Subscript n indexes a worker. A symbol with subscript n (for instance,

Xn) denotes a random variable or vector; the corresponding symbol without the subscript and typ-

ically in lowercase (for instance, x) denotes a realization of that random object. When convenient,

we make functional dependencies explicit—for example, Xn(Zn,Wn). Retaining the subscript n on

Xn(·) indicates a random function: even after fixing realizations Zn = z and Wn = w, the object

Xn(z, w) remains stochastic due to other latent sources of randomness, which we suppress in the

notation to maintain readability.

Firms. There is a finite number of heterogeneous firms, indexed by d ∈ D ⊂ N, where 2 ≤ |D |<

∞. Firms produce a homogeneous good sold in a perfectly competitive market at a price normalized

to 1. Each firm d ∈ D operates under a constant-returns-to-scale technology in workers’ labor as the

only input. Firms compete for workers by offering them wages each period for their employment

during that period. The model and econometric results extend to settings in which firms comprise

multiple jobs—the case we consider in our empirical application—where offers specify both a wage

and a job assignment. As we proceed, we highlight features of the multi-job case that warrant special

attention.

Workers. There is a large pool of workers, index by n ∈ N. Upon entering the labor market, each

worker n is endowed with time-invariant characteristics denoted by Hn,1, with support H, which

are observed by workers, firms, and the econometrician. These may include attributes such as gen-

der, race, and education, that capture worker n’s initial human capital. For expositional simplicity,
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we assume H is finite; all arguments extend to continuous Hn,1, with the usual care in handling

conditional probabilities and densities. Worker n has also other skills that are unobserved by the

econometrician and can be distinguished into two components: en with support E , which denotes

worker n’s efficiency (a time-invariant productivity multiplier) observed by workers and firms; and

θn with support Θ, which denotes worker n’s ability (a time-invariant skill type), initially unknown

to workers and firms but gradually and symmetrically learned by all based on worker n’s realized

output through a process described in detail later. Both en and θn are general traits that can influence

worker n’s performance when employed at any firm d.3 In the model, en may be scalar or multi-

dimensional, discrete or continuous. In the econometric analysis, we assume that its support E is

finite, thereby accommodating multidimensional types while restricting them to finitely many reali-

sations.4 Hereafter, we let θn take values in Θ := {θ̄, θ}, referred to as high (θ̄) and low (θ) ability.

This binary assumption simplifies the exposition of the learning process. We maintain the same as-

sumption on θn in the econometric section. Extensions to non-finite supports (including continuous

multidimensional en and θn) are provided in Appendix A.5

Human Capital. Hereafter, we use the letter t to denote a time period, which does not represent

calendar time but rather a worker’s experience in the labor market. Hence, t = 1 denotes the first

period of worker n in the labor market.6 As standard in the literature, worker n accumulates human

capital over time through a process that depends on the initial characteristics (Hn,1, en, θn) and on

the employment history Dt−1
n := (Dn,1, . . . , Dn,t−1), where Dn,t is a random variable representing

the firm employing worker n in period t, with support D. Formally, if employed by firm d ∈ D in

period t, worker n with efficiency en = e ∈ E has accumulated a human capital Hn,t(d, e) at the end

of the period, given by

Hn,t(d, e) = an,t(d, e) + ℓ(Hn,1, κn,t; d, e) + ϵn,t(d, e). (1)

In (1), Hn,t(d, e) is determined by two components: the labor-input ℓ(Hn,1, κn,t; d, e)+ ϵn,t(d, e)

3This generality is essential to generate realistic job mobility patterns. If en and θn were firm-specific and independent
across firms, workers would change jobs predominantly upon poor performance, unlike in typical data where highly
performing workers are observed to switch jobs both within and across firms.

4It is straightforward to accommodate a discrete bivariate en in which one dimension is as described and the other is
a kth-order Markov process; see Low et al. (2010) for a similar formulation.

5To preview Appendix A, we could allow en and θn to be continuous and multidimensional—for instance, to capture
settings in which ability and output signals are conjugate normal distributions.

6Some workers may first appear in the dataset several years after their initial entry into the labor market. In the class
of models we study, this affects only the identification of the initial distribution of beliefs about ability—the initial prior.
Specifically, if workers are observed only after their labor market entry, our methodology recovers the prior belief about
worker n’s ability, θn, as of worker n’s first appearance in the data, rather than as of the worker’s labor-market entry.
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and the total factor productivity (TFP) an,t(d, e). In the labor-input component, κn,t := κ(Hn,1, D
t−1
n )

is a deterministic function—known to workers, firms, and the econometrician—of worker n’s initial

human capital Hn,1 and employment history Dt−1
n that captures, for example, market experience and

firm-specific tenure. We denote by Kt the support of κn,t. ℓ(Hn,1, κn,t; d, e) is a (d, e)-specific func-

tion of (Hn,1, κn,t), known to workers and firms but unknown to the econometrician. ϵn,t(d, e) is an

idiosyncratic, (d, e)-specific productivity shock (or amenity), unobserved by the econometrician and

known to workers and firms.

The TFP term an,t(d, e) is a (d, e)-specific random variable whose distribution may depend on

(Hn,1, θn) and can vary across (d, e). Accordingly, θn affects Hn,t(d, e) via the distribution of

an,t(d, e). Importantly, the dependence of an,t(d, e) on θn is stochastic rather than deterministic:

different realizations of an,t(d, e) may arise even for the same θn. Therefore, once realized and ob-

served by workers and firms, an,t(d, e) serves as a noisy signal of ability—informative about θn but

not perfectly revealing. We detail how this signal updates beliefs later in this section.

In most employer-employee match datasets, an,t(d, e) is unobserved; thus, this will be the canon-

ical case considered in the econometric analysis. Henceforth, we assume that an,t(d, e) ∈ A :=

{ā, a}, interpreted as a high (ā) and low (a) signal. As with θn, this binary specification is adopted for

expositional simplicity. We maintain the same assumption in the econometric section; extensions to

non-finite supports (including continuous multidimensional an,t(d, e)) are provided in Appendix A.7

Output Technology. Normalizing labor supply to one, (1) represents the (potential) output Yn,t(d, e)

produced by worker n with efficiency en=e ∈ E at the end of t when employed by firm d ∈ D,

Yn,t(d, e) = an,t(d, e) + ℓ(Hn,1, κn,t; d, e) + ϵn,t(d, e). (2)

Because the firm index d enters the function ℓ(·; d, e) and the distributions (and realizations)

of the random components an,t(d, e) and ϵn,t(d, e), firms are ex-ante differentiated by their output

(and human-capital) technologies. For instance, a startup may exhibit higher baseline output and

steeper human-capital accumulation than a back-office operation. Moreover, as is typically the case
7Restricting the dependence on θn to operate through the distribution of an,t(d, e) (and not also through

ℓ(Hn,1, κn,t; d, e)) is for expositional simplicity. More general specifications are admissible—for example, a nonsepara-
ble term ℓ(Hn,1, κn,t, an,t(d, e); d, e). For the purposes of equilibrium characterisation, it suffices that: (i) Hn,t(d, e) is
strictly monotone in whichever component(s) are allowed to depend on θn; and (ii) the dependence of Hn,t(d, e) on θn
is stochastic rather than deterministic. Condition (i) ensures that, upon observing the output Yn,t(d, e) in equation (2),
workers and firms can invert the mapping and recover the unique realisation of the component(s) through which θn af-
fects Yn,t(d, e)—so the signal about θn is well defined—which is key for the learning process. Condition (ii) ensures that
learning is nontrivial, that is, θn is not revealed after a single observation of output. Lastly, the additive separability of
Hn,t(d, e) with respect to the idiosyncratic component ϵn,t(d, e) is common in the literature on dynamic discrete choice
models, and it is exploited both for the equilibrium characterization and for our identification proof.
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in matching frameworks, such output (and human-capital) technologies are allowed to be tailored

to worker n’s characteristics and job history, as reflected in the dependence of the components in

equation (2) on Hn,1, en, θn, and κn,t—see the discussion of equation (1). We present next how firms

differ in their technology of information generation.

Information Technology (Learning Process). At the beginning of each period t, firms make wage

offers and workers express acceptance decisions to maximize, respectively, the expected present dis-

counted value of profits (output minus wages) and wages. Before making these decisions, firms and

workers with efficiency en= e ∈ E observe initial human capital Hn,1, tenure and experience sum-

marized by κn,t, and the productivity shocks {ϵn,t(d, e)}d∈D at each potential firm d ∈ D. However,

the TFP components {an,t(d, e)}d∈D are observed only at the end of period t, after production. As

a result, firms and workers do not know the potential outputs {Yn,t(d, e)}d∈D ex-ante and therefore

make decisions based on their expectations about {an,t(d, e)}d∈D and, in turn, about {Yn,t(d, e)}d∈D.

Since the distribution of each an,t(d, e) depends on θn, these expectations depend on beliefs about

θn. The next paragraph describes how these beliefs are formed.

Firms and workers with efficiency en=e ∈ E learn about θn based on the common observations

of Yn,t(d, e), and so an,t(d, e), at the end of each period t at the employing firm d ∈ D. In this precise

sense, an,t(d, e) represents the public noisy signal about worker n’s ability θn that firms and workers

extract from realized output Yn,t(d, e). (Recall that an,t(d, e) is a random function of θn. If an,t(d, e)

was a deterministic function of θn, then the value of θn could be learned in one period after observing

an,t(d, e), and thus learning would become trivial.) As standard in the models we nest, we focus on

symmetric learning: all firms and workers share a common belief about θn in each period t. Formally,

at the beginning of period t = 1, firms and workers with efficiency en = e ∈ E have a common prior

belief of θn = θ̄, Pn,1(e) := Pr(θn = θ̄ | Hn,1, en = e). This prior need not coincide with the true

conditional distribution of θn and may incorporate any learning about θn that has taken place before

entry into the labor market, for instance, during schooling. At the end of period t ≥ 1, firms and

workers observe Yn,t(d, e) at the employing firm d ∈ D, and thus extract the signal an,t(d, e) about

worker n’s ability θn. At the beginning of period t + 1, firms and workers update their belief about

θn based on an,t(d, e) using Bayes’ rule. Assuming that the performance signals are conditionally

independent over time, the updated belief of θn = θ̄ can be defined recursively as

Pn,t+1(d, e) =


α(Hn,1,d,e)Pn,t(Dn,t−1,e)

α(Hn,1,d,e)Pn,t(Dn,t−1,e)+β(Hn,1,d,e)(1−Pn,t(Dn,t−1,e))
if an,t(d, e) = ā,

(1−α(Hn,1,d,e))Pn,t(Dn,t−1,e)

(1−α(Hn,1,d,e))Pn,t(Dn,t−1,e)+(1−β(Hn,1,d,e))(1−Pn,t(Dn,t−1,e))
if an,t(d, e) = a,

(3)
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where Pn,t(Dn,t−1, e) is the belief at the start of period twithDn,t−1 denoting worker n’s employment

choice at t− 1 (the realisation of Dn,t−1 is left unspecified in the notation), and

α(Hn,1, d, e) := Pr
(
an,t(d, e) = ā

∣∣Hn,1, Dn,t = d, en = e, θn = θ̄
)
,

β(Hn,1, d, e) := Pr
(
an,t(d, e) = ā

∣∣Hn,1, Dn,t = d, en = e, θn = θ
)
.

Importantly, because the terms α(Hn,1, d, e) and β(Hn,1, d, e) may vary across firms d, jobs can

differ in their informativeness about θn. Hence, firms are ex-ante differentiated not only by their

output (and human-capital) technology but also by their information technology. For example, ob-

serving the same high signal ā in a problem-solving role (e.g., troubleshooting unexpected issues)

may raise the posterior probability that a worker is high type θ̄ more than observing ā in a highly

standardized role (e.g., processing routine transactions); the former technology is more informa-

tive. Consequently, belief updating—and thus the speed of learning about θn—depends on the entire

history of jobs undertaken by worker n, as well as worker n’s characteristics, Hn,1, en, and θn.

Expected Output. At the beginning of every period t—before making their decisions—firms and

workers with efficiency en = e ∈ D calculate the expected output at firm d ∈ D as

E

(
Yn,t(d, e)

∣∣∣Hn,1, κn,t, Pn,t, en = e, ϵn,t

)
= E(an,t(d, e) | sn,t(e)) + ℓ(Hn,1, κn,t; d, e) + ϵn,t(d, e) := y(d, sn,t(e)) + ϵn,t(d, e),

where the information available to firms and worker n is collected in sn,t := (Hn,1, κn,t, Pn,t, en) and

ϵn,t :=
(
ϵn,t(d, e) : d ∈ D, e ∈ E

)
; Pn,t is shorthand for the belief Pn,t(Dn,t−1, en) that θn = θ̄ at the

beginning of t, as recursively defined in equation (3); sn,t(e) denotes sn,t evaluated at en = e; and

y
(
d, sn,t(e)

)
:= E

(
an,t(d, e) | sn,t(e)

)
+ ℓ(Hn,1, κn,t; d, e).

Equilibrium. Given the absence of complementarities in production among workers, to characterize

the model’s equilibrium, we can examine the competition of all firms for one worker at a time

without any loss of generality. We adopt a refinement of the notion of Markov perfect equilibrium,

which we term Robust Markov perfect equilibrium (RMPE). An RMPE consists of wage strategies

for firms and an acceptance strategy for worker n, alongside a belief function such that: (i) the

worker maximizes the expected present discounted value of wages; (ii) each firm maximizes the

expected present discounted value of its profits; (iii) beliefs are consistently updated according to

Bayes’ rule; and (iv) non-employing firms are indifferent between not employing and employing the

worker. Conditions (i) through (iii) define a standard MPE, under which multiple MPEs may exist.
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Condition (iv) selects one of such equilibria and hence acts as a refinement condition. We provide

further details on condition (iv) below. Under conditions (i)-(iv), an RMPE exists, is unique, and can

be efficient (Bergemann and Välimaki, 1996).

More formally, the state that firms face at the time they make their wage offers to worker n con-

sists of (sn,t, ϵn,t), and the state that worker n faces at the time they make their acceptance decisions

includes (sn,t, ϵn,t) and the collection of all firms’ wage offers that worker n receives. We denote

by wn,t,d := wd(sn,t, ϵn,t) the wage offer strategy of each generic firm d and by {wn,t,d}d∈D the col-

lection of all wage offer strategies. We denote by ln,t,d := ld(sn,t, ϵn,t, {wn,t,d}d∈D) the acceptance

strategy of worker n for firm d’s offer—an indicator function, taking value one if d is the employing

firm and zero otherwise—and by {ln,t,d}d∈D the collection of all acceptance strategies.

Given firms’ strategies, worker n’s acceptance strategy when of efficiency type en = e ∈ E

satisfies

W (sn,t(e), ϵn,t(e), {wn,t,d(e)}d∈D) = max
{ln,t,d(e)}d∈D

∑
d∈D

ln,t,d(e)×
[
wn,t,d(e)

+ δ[1− η(κn,t, d)]

∫
ϵn,t+1(e)

E
(
W (sn,t+1(e), ϵn,t+1(e), {wd,n,t+1(e)}d∈D) | sn,t(e), d

)
dFe

]
.

(4)

In (4) sn,t(e) is the vector sn,t evaluated at en = e ∈ E , ϵn,t(e) := (ϵn,t(d, e) : d ∈ D), wn,t,d(e) :=

(wd(sn,t(e), ϵn,t(e)), ln,t,d(e) := ld(sn,t(e), ϵn,t(e), {wn,t,d(e)}d∈D), Fe is the cumulative distribution

function of the vector of shocks ϵn,t(e), δ is the discount factor, and η(κn,t, d) is the probability

that worker n leaves the labor market at the end of period t, given the accumulated human capital

investments κn,t and the last employing firm d ∈ D.8 Note that, in (4), we assume that for each

e ∈ E , ϵn,t(e) is independent of sn,t(e), and that the vectors {ϵn,t(e)}t are i.i.d. across periods t,

as is standard in dynamic models. We maintain this assumption throughout. In our framework,

time persistence in the state is generated through κn,t (observed by the researcher) and (Pn,t, en)

(unobserved by the researcher).

Given worker n’s strategy and its competitors’ strategies, firm d’s strategy satisfies

Πd(sn,t(e), ϵn,t(e)) = max
wn,t,d(e)

(
ln,t,d(e)×

[
y(d, sn,t(e)) + ϵn,t(d, e)− wn,t,d(e)

+ δ[1− η(κn,t, d)]

∫
ϵn,t+1(e)

E
(
Πd(sn,t+1(e), ϵn,t+1(e)) | sn,t(e), d

)
dFe

]
+
∑

d′∈D\{d}

ld′,n,t(e)
{
δ[1− η(κn,t, d

′)]

∫
ϵn,t+1(e)

E
(
Πd(sn,t+1(e), ϵn,t+1(e)) | sn,t(e), d′

)
dFe

})
.

(5)

8Although we have ignored the possibility that a worker is unemployed, in the extension of the model to multi-job
firms, it would be straightforward to allow for an additional job that corresponds to the alternative of home production
(non employment). We have refrained from doing so just for simplicity, as our focus is on the dynamics of matching and
wages generated by human capital and learning as mechanisms for persistent wage inequality among workers.14



Without condition (iv) for equilibrium, this class of models gives rise to a multiplicity of MPE.

These equilibria are qualitatively similar in that they are characterized by the same allocations regard-

ing which firm employs worker n in each state, resulting in the same on-path outcomes. However,

these equilibria differ in the wages offered by non-employing firms; indeed, non-employing firms can

offer any wage up to the point where they are indifferent between not employing and employing the

worker. Condition (iv) resolves this trivial multiplicity by requiring that non-employing firms offer

wages that make them indifferent between not employing and employing the worker. In particular,

condition (iv) selects an equilibrium in a manner that is standard in the literature on trembling-hand

perfect equilibrium (Selten, 1975). If, say, firm d′ ∈ D employs worker n at state (sn,t(e), ϵn,t(e)),

condition (iv) requires for any other firm d ∈ D that

δ[1− η(κn,t, d
′)]

∫
ϵn,t+1(e)

EΠd(·|sn,t(e), d′)dFe

= max
wn,t,d(e)

{
y(d, sn,t(e))+ϵn,t(d, e)− wn,t,d(e)+δ[1− η(κn,t, d)]

∫
ϵn,t+1(e)

EΠd(·|sn,t(e), d)dFe
}
.

(6)

Namely, firm d must offer worker n a wage that makes firm d indifferent between not employing

the worker—in which case its payoff is the left side of (6)—and employing the worker—in which

case its payoff is the right side of (6). Importantly, under condition (iv), an employed worker’s

wage is uniquely determined—specifically, it equals the wage offered by the second-best firm plus a

compensating differential, as shown in Proposition 1 below.

2.1 Equilibrium Wage

An intuition for how wages are determined can be gained by considering a static model with just

two firms. Recall that in a static model of Bertrand price competition for a homogeneous product

among two firms with heterogeneous output technology, the high productivity (low-cost) firm sells

to a consumer at a price equal to the cost of the low-productivity (high-cost) firm, making the con-

sumer indifferent between the two sellers. Analogously, in the static version of our model with two

firms—where the two firms have heterogeneous output (and human-capital) technologies and there

is no learning—worker n’s wage in period t equals the worker’s output were the worker hired by

the competitor of the employing firm. Thus, in equilibrium, the worker is indifferent between em-

ployment at the employing firm and employment at its competitor. In the special case of perfect

competition, where firms have identical output technology, the worker is paid their output, as the

output at the non-employing firm is the same as at the employing firm.

In the dynamic version of our model with two firms differing in their output, human-capital,
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and information technologies, the same indifference condition holds: in equilibrium, the worker is

indifferent between the employing firm and its competitor. However, additional factors must be taken

into account in this dynamic setting. Specifically, the human capital and information accumulated

during employment at one firm lead to future returns for the worker. Therefore, a firm at which a

worker can accumulate substantial human capital or information can afford to pay a lower wage while

still employing the worker. Conversely, a firm that offers limited opportunities for accumulating

human capital or information must offer a higher wage to attract the worker.

With more than two firms, a similar argument applies—in this case, the two firms competing for a

worker are those offering the two highest expected present discounted values of wages. Specifically,

we demonstrate that worker n’s wage in period t equals the expected output the worker would pro-

duce if hired by the firm ranked as “second-best” in terms of the offered expected present discounted

values of wages—akin to a second-price auction—plus a compensating differential term, which is

either a premium for the missed future returns in terms of human capital and information acquisition

that would have been gained by accepting a job at the second-best firm (and so is positive) or a dis-

count for the greater future returns in terms of human capital and information acquisition that are

gained by accepting a job at the first-best firm (and so is negative).

Wage Equation. Formally, consider the equilibrium ranking of firms based on the expected present

discounted value of the wage they offer to worker n in period t. Focus on the two firms that provide

the highest expected present discounted values of wage in this ranking. Of these, designate the

“first-best” firm as the employing firm and the “second-best” as the non-employing firm. Hereafter,

we typically denote them as d and d′, respectively. Moreover, let Vd′(sn,t(e), ϵn,t(e)) represent the

expected present discounted value of the match surplus generated by worker n and firm d′ at state

(sn,t(e), ϵn,t(e)), defined as the sum of the worker’s wage value and firm d′’s profit value.

Proposition 1 (Equilibrium Wage). The equilibrium wage of worker n with efficiency en = e ∈ E in

period t, when d ∈ D is the employing firm and d′ ∈ D is the second-best firm, is

wn,t(d, d
′, e) = y(d′, sn,t(e)) + Ψ(d, d′, sn,t(e)) + ϵn,t(d

′, e), with (7)

Ψ(d, d′, sn,t(e)) :=δ[1− η(κn,t, d
′)]

∫
ϵn,t+1(e)

EVd′(sn,t+1(e), ϵn,t+1(e)|sn,t(e), d′)dFe

− δ[1− η(κn,t, d)]

∫
ϵn,t+1(e)

EVd′(sn,t+1(e), ϵn,t+1(e)|sn,t(e), d)dFe.

According to Proposition 1, a worker’s wage is the sum of three terms: y(d′, sn,t(e))+ ϵn,t(d′, e),

which is the expected per-period output at d′ (after the vector of productivity shocks ϵn,t is realised),
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and Ψ(d, d′, sn,t(e)), which is a compensating differential. In particular, Ψ(d, d′, sn,t(e)) is the dif-

ference between two value functions: the first being the (counterfactual) future expected discounted

match surplus value generated by worker n and firm d′ had d′ being chosen by n in period t, and the

second being the future expected discounted match surplus value generated by worker n and firm

d′ when worker n chooses firm d in period t. Lastly, note that in the expression wn,t(d, d′, e), the

subscript (n, t) encapsulates not only the worker and time indices but also any dependence of the

wage on the state (sn,t(e), ϵn,t(e)) that is worker- and time-specific.

An implication of Proposition 1 for multi-job firms—the case in our empirical application—is the

following. When exogenous separation rates and the human-capital process are sufficiently similar

across firms, if firm d’s job is more informative than firm d′’s in the Blackwell sense, the com-

pensating differential is negative; if it is less informative, the compensating differential is positive.

Intuitively, a firm pays less than static competition would predict when employment there delivers

greater learning about ability (the worker enjoys an informational gain), and pays a premium when

employment there entails forgoing such learning (an informational loss). We emphasise that we do

not impose additional assumptions to guarantee this sign pattern; we note it simply as a qualitative

implication that will help guide the interpretation of some of our empirical results.

Proposition 2 (Sign of Compensating Differential). When the differences η(κn,t, d)− η(κn,t, d
′) are

sufficiently small across any two firms d and d′ for each κn,t and the process of human capital ac-

quisition is sufficiently similar across firms, the compensating differential is negative (respectively,

positive) whenever performance signals at firm d are more (respectively, less) informative than per-

formance signals at firm d′.

2.2 Econometric Model

The model just described can be cast as a dynamic equilibrium generalised Roy model. In particular,

the observed wage of worker n in period t is

wn,t =
∑

(d,d′)∈D2

∑
e∈E

1{Dn,t = d,D′
n,t = d′, en = e}wn,t(d, d′, e)

=
∑

(d,d′)∈D2

∑
e∈E

1{Dn,t = d,D′
n,t = d′, en = e}

[
y(d′, sn,t(e)) + Ψ(d, d′, sn,t(e)) + ϵn,t(d

′, e)
]
,

(8)

where Dn,t denotes the employing (first-best) firm for worker n in period t, with generic realisation

d ∈ D; D′
n,t denotes the second-best firm, with generic realisation d′ ∈ D; en denotes worker n’s

efficiency, with generic realisation e ∈ E ; wn,t(d, d′, e) is the potential wage defined in equation (7);

and sn,t(e) denotes the vector of state variables sn,t := (Hn,1, κn,t, Pn,t, en) evaluated at en = e.
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Assumption 1 (Data).The joint distribution of (wn,t, Hn,1, Dn,t) is known for each period t =

1, . . . , T , with T <∞. ⋄

Assumption 1 describes the observation scheme maintained throughout. It requires the econo-

metrician to have access to a panel of data on wages, initial attributes, and employment choices. We

keep T finite and presume elsewhere that the number of workers grows arbitrarily large. We make

minimal data requirements to accommodate the limited information typically available in standard

employer-employee matched datasets. In particular, we do not rely on the availability of variables

that can facilitate the identification of the learning process, such as proxies for beliefs or direct in-

formation on performance. In Section 4.8, we show how the availability of such additional data can

simplify some estimation steps under extra assumptions. To simplify the notation, we assume that

the panel is balanced; however, all econometric arguments remain valid even with an unbalanced

panel. The occupation choice Dn,t can depend on all the variables entering the equilibrium wage

equation, some of which are not observed by the econometrician, namely en, Pn,t, and ϵn,t. This

dependency arises from the optimising behaviour of workers and firms, leading to dynamic selection

on unobservables.

Primitives of Empirical Interest. We show below how to identify several primitives, which en-

able us to study the fundamental question of measuring the impact of sorting on earnings inequality.

In particular, we identify the “deterministic” wage component φ(d, d′, sn,t(e)) := y(d′, sn,t(e)) +

Ψ(d, d′, sn,t(e))—defined as the sum of expected output (net of productivity shocks) and the com-

pensating differential—and the distribution of the productivity-shock vector ϵn,t. We then identify

the output (and human-capital) technology y(d′, sn,t(e)) and thereby disentangle the compensating

differential Ψ(d, d′, sn,t(e)) from φ(d, d′, sn,t(e)). Given y(d′, sn,t(e)), we recover its “determinis-

tic” labor-input component ℓ(Hn,1, κn,t; d
′, e). We also identify the law of motion for the state sn,t,

including the information technology (learning process). Finally, we identify the distribution of job

choices Dn,t conditional on sn,t (conditional choice probabilities, or CCPs). Throughout, we take

the discount factor δ as known, as is standard in dynamic models.

3 Overview of Identification

A key primitive for us is the deterministic wage component φ(·) := y(·) + Ψ(·), which we then use

to separately identify the output (and human-capital) technology y(·) and the compensating differ-

ential Ψ(·). As previewed in Section 2.2, however, identification of φ(·) is complicated by selection

of Dn,t based on the following unobserved state variables: (i) idiosyncratic productivity shocks ϵn,t
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(time-varying and serially uncorrelated); (ii) worker efficiency en (time-invariant); and (iii) beliefs

Pn,t of workers and firms about worker ability θn (time-varying, serially correlated, and endoge-

nously evolving with past occupational choices). The shocks ϵn,t enter additively into the output

component y(·) of the wage equation. Worker efficiency en and beliefs Pn,t enter both the output

y(·) and the compensating-differential Ψ(·) components; in the latter, they enter nonadditively and,

in general, nonmonotonically. This is because Ψ(·) captures the difference in wage returns—from

t+ 1 onward—between accepting today’s job at the employing firm and the second-best alternative.

As a difference in future values, Ψ(·) is an endogenous dynamic payoff that generally depends on all

observable and unobservable attributes of firms and workers in an a priori unknown manner.

The econometric literature on the static Roy model offers tools for handling selection on idiosyn-

cratic shocks ϵn,t that enter the wage equation additively (or, more generally, monotonically)—since

such selection arises in the standard Roy setting as well. By contrast, dealing with the other two

classes of unobservables—en and Pn,t—in the environments we consider requires a different identi-

fication strategy. Our strategy augments the standard quantile approach for static Roy models with a

mixture approach.

Namely, we first represent the cross-sectional wage distribution at time t—conditional on a

worker’s occupational history Dt
n := (Dn,1, . . . , Dn,t) and observables Hn,1—as a mixture over la-

tent classes indexed by en and by the history of noisy performance signals at−1
n := (an,1, . . . , an,t−1)

about θn. (To simplify notation, we henceforth write an,t(Dn,t, en) as an,t.) Since the state sn,t :=

(Hn,1, κn,t, Pn,t, en) is a deterministic function of (Hn,1, D
t−1
n , en, a

t−1
n ), it follows that each mixture

component is determined by the distribution of ϵn,t conditional on the selected employing firm in

period t, Dn,t. We identify the wage distribution of each latent class from the corresponding mixture

component. Similarly, we identify the probabilities of the latent classes from the mixture weights.

We recover such mixture components and weights under mild conditions, namely that the wage dis-

tribution admits a generalised finite mixture representation: a finite mixture whose components are

(potentially continuous) Gaussian mixtures. We use the term generalised finite mixture because finite

mixtures of continuous Gaussian mixtures can approximate any distribution arbitrarily well (Bruni

and Koch, 1985; Nguyen and McLachlan, 2019; Aragam et al., 2020). This class is therefore well

suited to model general, selection-contaminated distributions that need not follow a standard para-

metric form—as in our setting, where the mixture components are contaminated by the selection of

Dn,t based on ϵn,t.

As workers accumulate experience, the weights of the wage mixture capture the probabilities of

19



the employment histories of workers with different observed and unobserved characteristics, includ-

ing their histories of performance signals. By concatenating these weights over time, we identify

not only the initial distributions of the key unobserved state variables—en and Pn,t—together with

their laws of motion, but also the CCPs. Equipped with these initial distributions and transition laws,

we then adapt standard quantile methods from the static Roy literature to recover, from the iden-

tified mixture components (which, recall, are contaminated by selection of Dn,t based on ϵn,t), the

deterministic wage φ(·) at each firm and time period. Lastly, with φ(·) identified, we identify the

distribution of ϵn,t, the output technology y(·), the compensating differential Ψ(·), and the remaining

components of the output (and human-capital) equation.

A challenging feature of the class of models we study is the absence of exclusion restrictions—

that is, there is no state variable that shifts one component of the model while leaving others unaf-

fected. This feature shapes each step of our identification argument. Specifically, by interpreting

the wage distribution as a mixture—the mixture step of our identification argument—any variable

that affects the mixture components also affects the mixture weights, and vice versa. As a result, we

cannot apply well-known identification strategies for mixture models that rely on excluded variables

(see Henry et al., 2014; Compiani and Kitamura, 2016; Jochmans et al., 2017). Instead, we rely on

the generalised finite mixture representation for identification, as mentioned above.

In the second quantile step of our identification arguments—where we address selection on ϵn,t

to recover the deterministic wage φ(·)—the same lack of exclusion restrictions reappears: every

state variable affects wages at all jobs and job choices. Classical identification arguments for the

static Roy model leverage excluded regressors with rich support that shift wages only in one job,

so that for some workers, their choice of job is independent of their unobserved characteristics.

Since such regressors are unavailable here, we cannot follow that route. Instead, we adapt this

“at-infinity” logic by exploiting the rich support of wages. Intuitively, at extreme wage quantiles,

the idiosyncratic productivity shocks ϵn,t dominate the deterministic component of wages φ(·) in

determining a worker’s job assignment. Namely, for very high values of a job-specific productivity

shock, the corresponding job becomes by far a worker’s best assignment. Hence, conditioning on

working in a job is essentially equivalent to conditioning on a tail event of the shock in that job. By

mapping tail probabilities to quantiles and comparing groups of workers at suitably matched high

quantiles (after a simple selection re-indexing), the contribution of ϵn,t to wages cancels out, allowing

us to recover the deterministic wage φ(·) as desired.

As for the rest of this overview, Section 3.1 summarises the identification literature on the static
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Roy model and how we adapt it in the second step of our argument to address selection on ϵn,t.

Building on this summary, Section 3.2 presents our identification steps in greater detail. Section 4

contains all formal arguments—readers primarily interested in our empirical application may skip it.

3.1 A Review of the Identification of the Roy Model

As discussed by French and Taber (2011), identification for the Roy model can be achieved either

semiparametrically or even nonparametrically. For an intuitive understanding of the common ap-

proach and the challenges associated with adapting it to our setting, consider, throughout Section

3.1, a simplified static version of the wage equation in (8), namely,

wn =
∑

d∈{0,1}

1{Dn = d}wn(d) =
∑

d∈{0,1}

1{Dn = d}
[
y(d,Xn) + ϵn(d)

]
, (9)

obtained by removing the dependence on the second-best firm D′
n,t—so all wage components pre-

viously indexed by d′ are now indexed by d only—as well as the dependence on the efficiency type

en and the time subscript t. Here, D := {0, 1} denotes two job alternatives, and the compensating

differential Ψ(·) does not arise in this static version of the model. For the purposes of this section,

the state vector sn,t is replaced by covariatesXn, which are assumed to be observed by the econome-

trician (whereas in our setting, the law of motion for sn,t will be identified first via the wage-mixture

step, as previewed above). The vector of shocks ϵn := (ϵn(0), ϵn(1)) is independent of Xn. As is

well known, identifying the deterministic wage components y(1, Xn) and y(0, Xn) in equation (9) is

difficult due to selection of Dn based on ϵn. To see why, observe that

E(wn | Dn = d,Xn) = E
(
y(d,Xn) + ϵn(d) | Dn = d,Xn

)
= y(d,Xn) + E(ϵn(d) | Dn = d,Xn),

where the conditional expectation λ(d,Xn) := E(ϵn(d) | Dn = d,Xn) may differ from its uncondi-

tional counterpart E(ϵn(d)), because Dn depends on both Xn and ϵn. Consequently, it is impossible

to recover y(d,Xn) from E(wn | Dn = d,Xn) alone without imposing further assumptions.

The Case with Exclusion Restrictions. One way to address selection on ϵn is to rewrite (9) as

wn =
∑

d∈{0,1}

1{Dn = d}
[
y(d,Xn) + λ(d,Xn) + un(d)

]
, (10)

where un(d) := ϵn(d) − λ(d,Xn) and hence, by construction, E(un(d) | Dn = d,Xn) = E(ϵn(d)),

which is tipically normalized to zero. Then, ifXn can be split into two components,X†
n andX∗

n, such

that y(d,Xn) depends only on X†
n and λ(d,Xn) depends only on X∗

n—often referred to as exclusion

21



restrictions—it becomes possible to identify y(d,X†
n), provided that certain additional assumptions

on y(·) and λ(·) hold (Ahn and Powell, 1993; Newey, 2009; Das et al., 2003)

Another way to address selection on ϵn consists of relying on worker-job-specific covariates

with a sufficiently rich support that influence the wage in one job only, representing another type of

exclusion restriction (Heckman and Honoré, 1990). In particular, suppose we can express (9) as

wn =
∑

d∈{0,1}

1{Dn = d}
[
y(d,Xn(d)) + ϵn(d)

]
, (11)

where Xn(d) is now a worker-job-specific covariate (scalar, for simplicity) that exclusively affects

the potential wage in job d. Consider two realizations x1 and x̃1 of Xn(1) and suppose that we can

correspondingly find two values x0 and x̃0 of Xn(0) such that Pr(Dn = 1 | Xn = (x0, x1)) =

Pr(Dn = 1 | Xn = (x̃0, x̃1)). In a setting where worker n chooses the job with the highest wage,

E(ϵn(1) | Xn = (x0, x1), Dn = 1) = E(ϵn(1) | Xn = (x̃0, x̃1), Dn = 1). Thus,

E(wn | Xn = (x0, x1), Dn = 1)− E(wn | Xn = (x̃0, x̃1), Dn = 1) = y(1, x1)− y(1, x̃1),

and so the difference y(1, x1)−y(1, x̃1) is identified. As long as Xn(0) sufficiently varies, the whole

function y(1, Xn(1)) can be identified up to location. We can also proceed further and completely

identify y(1, Xn(1)) as follows. Suppose y(0, Xn(0)) is linear and increasing in Xn(0), and Xn(0)

has unbounded support. Then, for any realization x1 of Xn(1),

lim
x0→−∞

Pr(Dn = 1 | Xn = (x0, x1)) = 1, (12)

and by the law of total probability,

lim
x0→−∞

E(ϵn(1) | Dn = 1, Xn = (x0, x1))= lim
x0→−∞

E(ϵn(1) | Xn = (x0, x1)) = E(ϵn(1)).

Therefore, under the normalisation E(ϵn(1)) = 0,

lim
x0→−∞

E(wn | Dn = 1, Xn = (x0, x1)) = lim
x0→−∞

E(wn(1) | Xn = (x0, x1)) = y(1, x1),

and y(1, x1) is identified from knowledge of limx0→−∞ E(wn | Dn = 1, Xn = (x0, x1))—hence,

the phrase identification at infinity (Chamberlain, 1986; Heckman, 1990). In summary, condition

(12) eliminates the impact of selection from the first moment of the wage distribution of a group

of individuals with extreme values of Xn(0). For this group, the expected potential wage in job

22



1 conditional on choosing job 1, which is observed from the data, is equal to the unconditional

expected potential wage in job 1, which is generally unobserved from the data.

Challenges Specific to Our Setting. The identification strategies discussed, which rely on exclusion

restrictions, cannot be adapted to the class of models we consider, as these models do not admit such

restrictions. That is, even in an ideal scenario where all state variables are observed and can thus be

treated as standard covariates, in our class of models these state variables influence both wages and

the selection-correction term λ(·). Indeed, any variable that affects wages also affects the probability

that workers choose a particular job, thereby determining λ(·). Conversely, the probability that

a worker opts for a given job determines the wages firms are willing to offer. As a result, state

variables cannot be partitioned into distinct components that separately affect wages and λ(·).

Furthermore, the class of models we study lacks worker-job-specific state variables affecting the

wage in one job only, which are essential for implementing the at-infinity identification strategy of

Chamberlain (1986) and Heckman (1990). One might wonder about three potential candidates for

such worker-job-specific variables: beliefs about a worker’s ability, worker’s tenure at the job, and

other worker-job-specific wage components, such as a worker’s distance from a job location, which

must be observed in the data or identifiable. However, none of these applies to our setting. Indeed,

as highlighted in Section 2, we allow ability θn to be general across jobs, rather than restricting it

to be specific to a particular job. Thus, the belief about a worker’s ability is represented by a single

probability distribution, Pn,t, over the worker’s possible levels of ability affecting wages at all jobs—

rather than a collection of job-specific probability distributions over the worker’s possible levels

of ability, influencing each corresponding wage—and is shaped by the worker’s entire job history.

Similarly, the human capital accumulation process, which affects a worker’s output, may depend on

the experience gained in all jobs. As a result, variables such as job tenure included in κn,t impact

wages in all jobs. Lastly, in the current model version, a worker’s value of non-employment (non-

market time) does not impact equilibrium wages. Consequently, variables such as distance from the

job location are not included in the equilibrium wage equation. These could be incorporated through

wage bargaining. However, they are typically difficult to observe in standard employer-employee

match datasets; for instance, they are absent in the LEHD dataset.910

The Case without Exclusion Restrictions: Our Approach. Without covariates that serve as exclu-

sion restrictions, we adapt an “at-infinity” argument that exploits the rich support of wages—rather
9In Appendix C, we discuss how the argument in this section also applies to models with search and matching

frictions in which wages are bargained and a worker’s value of non-employment affects wages unlike in our framework.
10Firm-specific covariates fixed at the worker level—for instance, firm size or revenues—are often available in datasets,

yet do not provide enough variation for identification in the Roy model.

23



than excluded covariates—to address the problem of selection on ϵn. Specifically, far out in the upper

tail—at extremely high wages—selection into a job (say, job 1) is easy to account for: conditional on

receiving a very high wage in job 1, the probability of actually being observed in job 1 converges to

a constant. In practical terms, selection merely rescales the extreme right tail of the observed wage

distribution, so that selection just shifts the tail up or down but does not change how fast it thins

out as wages grow. Under the assumption that the wage distribution is well-behaved in that far-right

region—namely, continuous and strictly increasing, a regularity feature of many distributions (in-

cluding both light-tailed and heavy-tailed)—tail probabilities and quantiles are one-to-one related.

This property lets us express extreme quantiles of observed wages as extreme quantiles of potential

job-1 wages, evaluated at a slightly adjusted quantile that corrects for the selection scaling. We then

compare any group x to a reference group x̄ whose job-1 intercept y(1, x̄) is normalised to zero. We

choose sufficiently high quantiles for each group so that, after the selection correction, both groups

are effectively evaluated at the same quantile of their potential wage distributions. With this align-

ment, the shock component loads identically across groups and cancels when we difference the two

extreme observed quantiles, without imposing any further restrictions. What remains is precisely the

structural component of the wage for group x relative to the reference, y(1, x) − y(1, x̄). Because

y(1, x̄) is normalised to zero, that difference equals the target parameter y(1, x), which is therefore

identified (up to a location normalisation).

We now formalize this result for the simplified static wage equation (9) in Proposition 3. We

focus on job 1, but a symmetric argument applies to job 0. In Section 4, we present the analogue of

Proposition 3 for our general class of dynamic models.

Proposition 3 (Deterministic Wage Component). Assume:

(i) (Exogeneity.) ϵn(1) is independent of Xn.

(ii) (Supports.) For each realisation x of Xn,

ω(x) := sup{u : Pr(wn(1) ≤ u | Xn = x) < 1} = +∞,

ωobs(x) := sup{u : Pr(wn ≤ u | Dn = 1, Xn = x) < 1} = +∞,

0 < Pr(Dn = 1 | Xn = x) ≤ 1.

(iii) (Tail Limit.) There exists an (unknown) constant q1 ∈ (0, 1] such that for each realisation x of

Xn,

lim
w→+∞

Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
= q1.
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(iv) (Tail Regularity.) For each realisation x of Xn, there exist (unknown) thresholds wx < +∞

andwobs
x < +∞ such that the cumulative distribution functionsFwn(1)|Xn=x andFwn|Dn=1,Xn=x

are continuous and strictly increasing on (wx,+∞) and (wobs
x ,+∞), respectively.

(v) (Normalization.) There exists a known realisation x̄ of Xn with y(1, x̄) = 0.

For each realisation x of Xn, define

c(1, x) :=
q1

Pr(Dn = 1 | Xn = x)
∈ (0,∞).

Let {τ (k)x̄ }k≥1 ⊂ (0, 1) be any sequence with τ (k)x̄ → 1 as k → +∞. Define

1− τ (k)x :=
c(1, x)

c(1, x̄)

(
1− τ

(k)
x̄

)
.

Then,

lim
k→+∞

[
Qwn |Dn=1,Xn=x

(
τ (k)x

)
− Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

) ]
= y(1, x). (13)

Hence, y(1, x) is identified (up to the location normalization at x̄).

The proof of this result proceeds in three steps. First, under Assumptions (ii)–(iii), the right tail

of the selected wage distribution—observed in the data—is asymptotically proportional to the right

tail of the potential wage distribution—unobserved in the data. Namely, for each realisation x ofXn,

Pr(wn > w | Dn = 1, Xn = x) ∼ c(1, x) Pr
(
wn(1) > w | Xn = x

)
(w → +∞), (14)

with c(1, x) = q1/Pr(Dn = 1 | Xn = x) ∈ (0,∞). Intuitively, selection only multiplies the

far-right tail of the potential wage distribution by the constant c(1, x).

Second, Assumption (iv) lets us invert (14) on the tail. The result is the following relation be-

tween the selected quantile and the potential quantile:

Qwn |Dn=1,Xn=x(τ) = Qwn(1) |Xn=x

(
1− 1−τ

c(1,x)
+ ox(1− τ)

)
, τ → 1, (15)

where the remainder satisfies ox(1 − τ)/(1 − τ) → 0 as τ → 1. By Assumption (i) and the

decomposition wn(1) = y(1, x) + ϵn(1), Qwn(1) |Xn=x(u) = y(1, x) +Qϵn(1)(u), so (15) becomes

Qwn |Dn=1,Xn=x(τ) = y(1, x) +Qϵn(1)

(
1− 1−τ

c(1,x)
+ ox(1− τ)

)
, τ → 1. (16)

Third, we apply (16) twice: first at (x, τx) and then at (x̄, τx̄), where the levels τx, τx̄ → 1 are
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chosen so that the inner indices match,

1− 1− τx
c(1, x)

= 1− 1− τx̄
c(1, x̄)

. (17)

In particular, one convenient choice that guarantees (17) is 1 − τx = c(1,x)
c(1,x̄)

(1 − τx̄). Using (17) and

the normalization y(1, x̄) = 0 from Assumption (v), we obtain

Qwn |Dn=1,Xn=x(τx) = y(1, x) + Qϵn(1)

(
u+ ox(1− τx)

)
τx → 1,

Qwn |Dn=1,Xn=x̄(τx̄) = 0 + Qϵn(1)

(
u+ ox̄(1− τx̄)

)
τx̄ → 1.

Subtracting the second display from the first yields

Qwn |Dn=1,Xn=x(τx) − Qwn |Dn=1,Xn=x̄(τx̄) = y(1, x) + Qϵn(1)

(
u+ ox(1− τx)

)
− Qϵn(1)

(
u+ ox̄(1− τx̄)

)
τx, τx̄ → 1.

(18)

Since ox(1− τx), ox̄(1− τx̄) → 0 and Qϵn(1) is continuous near 1 by Assumption (iv), the difference

of the two error–quantile terms in (18) vanishes as τx, τx̄ → 1. Hence the left–hand side converges

to y(1, x). In summary, the proof hinges on two ideas: (a) selection preserves the rate of tail decay

up to a constant, and (b) by working with quantiles and carefully reindexing the tail probability, we

can subtract out the shock and recover the deterministic component y(1, x).

To clarify Assumptions (i)–(v) in Proposition 3: Assumption (i) is the standard exogeneity con-

dition in Roy models. Assumption (ii) requires that both the potential wages wn(1) | Xn = x and the

observed, selected wages wn | (Dn = 1, Xn = x) have unbounded right support. This requirement

is not essential: a bounded-right-endpoint analogue tracks convergence to the finite right endpoint—

rather than to +∞—with only minor modifications. In particular, exactly one of the following cases

obtains: (a) ω(x) = ωobs(x) = +∞; (b) ω(x) = ωobs(x) < +∞; (c) ωobs(x) < ω(x) ≤ +∞.11 Case

(a) is the setting covered by Proposition 3. Under (b), Proposition 3 and its proof go through with

minimal edits—replace limits as w → +∞ with limits as w → ω(x). Under (c)—where the right

endpoint of the observed, selected wage distribution can differ from (and be finite relative to) that

of the potential wage distribution, so selection affects not only the distributional shape but also the

support of observed wages—the identification result retains the spirit of Proposition 3, but extra care

is needed in taking limits because the two endpoints differ. In Appendix B.2, we treat case (c) and

further show that, when finite, the right and left endpoints of the potential wages wn(1) | Xn = x

and shock ϵn(1) can be nonparametrically identified. Assumption (ii) also requires that, for every
11We ignore ωobs(x) > ω(x) as supp(wn|Dn = 1, Xn = x) ⊆supp(wn(1)|Xn = x) implies ωobs(x) ≤ ω(x).
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realisation x of Xn, the probability of choosing job 1 is strictly positive, Pr(Dn = 1 | Xn = x) > 0.

This is only for expositional simplicity: the framework also allows Pr(Dn = 1 | Xn = x) = 0 for

some x, in which case y(1, x) is not identified at those x.

Assumption (iii) imposes a common tail-selection limit q1 ∈ (0, 1], independent of x, for Pr(Dn =

1 | Xn = x, wn(1) > w) as w → +∞. Existence and positivity of this limit imply that the right

tail of the selected wages, Pr(wn > w | Dn = 1, Xn = x), and the right tail of the potential wages,

Pr(wn(1) > w | Xn = x), are asymptotically proportional as w → +∞ (equation (14)). Invari-

ance of the limit across x—that is, when the potential wage for job 1 is very large, the effect of Xn

on the probability of selecting job 1 becomes negligible—ensures that the indices {τ (k)x }k≥1 in the

identification claim (20) can be computed from the data without knowing q1. Specifically,

1− τ (k)x :=
c(1, x)

c(1, x̄)

(
1− τ

(k)
x̄

)
=

Pr(Dn = 1 | Xn = x̄)

Pr(Dn = 1 | Xn = x)

(
1− τ

(k)
x̄

)
.

For a micro-foundation of Assumption (iii), see Lemma 1 in Appendix B.1, which reproduces Corol-

lary 4.1 in D’Haultfoeuille and Maurel (2013).

Assumption (iv) is a tail-regularity condition: continuity and strict monotonicity of the relevant

CDFs on far-right intervals ensure a one-to-one mapping between tail probabilities and quantiles,

which justifies the quantile reindexing step of the proof (equation (15)). This condition is satisfied

by many parametric families, including both thin-tailed and fat-tailed distributions. Finally, Assump-

tion (v) is a location normalisation: as in standard Roy models, wages are identified only up to an

additive constant. Fixing y(1, x̄) = 0 pins down the wage level in our setting. Alternatively, the error

term can be normalised to have zero unconditional mean or median (French and Taber, 2011).12

To complete the argument, we now consider the unconditional joint distribution of the vector

of shocks ϵn := (ϵn(1), ϵn(0)). A well-known negative result by Tsiatis (1975) shows that, in

competing-risks models without covariates, the joint distribution of the latent risks is not identified.

By contrast, Heckman and Honoré (1989) establish that under sufficiently rich covariate variation—

specifically, with at least as many continuous covariates as there are causes of failure among other

conditions—the joint distribution can be identified nonparametrically. Translated to the Roy setting

studied here, this implies that without at least as many continuous covariates as there are jobs, one

cannot nonparametrically identify the joint distribution of ϵn. Standard matched employer–employee
12See also D’Haultfoeuille and Maurel (2013), who identify the deterministic wage component in a static Roy model

without exclusion restrictions by exploiting the extreme tails of the shock distribution. Our Assumption (iii) corresponds
to their Assumption 3. Whereas they work under a thin-tailed assumption (their Assumption 2), we extend the argument
to allow wage (and log-wage) distributions with fat tails, which is important for plausibly modeling the U.S. wage
distribution.
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data, for instance, the LEHD for the United States, typically record worker attributes in coarse, dis-

crete categories such as education and intervals or occupation codes. Moreover, in our dynamic

framework, a state variable that can be treated as approximately continuous may exist, the belief

Pn,t, but, as discussed earlier, it is a single probability distribution over a worker’s general ability.

Consequently, the requisite continuous variation per alternative is absent, rendering the Heckman

and Honoré (1989) strategy infeasible in our setting. In view of this, we proceed by focusing on the

marginal distributions of ϵn(1) and ϵn(0). To recover their joint distribution, we either add an explicit

independence assumption, impose a parametric copula, or work with Fréchet–Höffding bounds for

partial identification.13

Regarding the marginal shock distributions, we have seen above that, under the assumptions of

Proposition 3, in the far-right tail the survival function of the observed (selected) wages is asymp-

totically proportional to the survival function of the corresponding potential wages (equation (14)).

Intuitively, selection stops “tilting” the tail and only rescales it by a constant. Because this rescaling

cancels when we take ratios of tail probabilities (or differences of high quantiles), the proposition

lets us nonparametrically recover the shape of each shock’s extreme right tail: how fast tail prob-

abilities decay, how heavy the tail is, high-quantile growth rates, and extreme support points when

finite. What this does not deliver is the full marginal distribution: the proposition yields asymptotic

tail information but leaves the interior unrestricted. If, however, one specifies a parametric family

for ϵn(1) and ϵn(0), the same tail-ratio argument produces a finite system whose solution identifies

the parameter vectors governing the two marginals.14

Corollary 1 (Identification of the Shock Distribution). Let Assumptions (i) to (v) of Proposition 3

hold for each d ∈ {0, 1} so that y(d, x) is identified for each d ∈ {0, 1} and realisation x of Xn.

(a) (Marginal Identification.) Assume ϵn(1) belongs to a known parametric family indexed by the

p1 × 1 vector or parameters µ1 ∈ M1 ⊆ Rp1 . Fix any realisation x of Xn and choose p1+1

13Assuming independence between the shocks ϵn(1) and ϵn(0) in the static Roy model (9) can be restrictive, because
these shocks are the sole source of unobserved heterogeneity and may, in principle, embody substantial correlation across
potential wages. By contrast, in our broader class of dynamic models this assumption is less consequential: structural
correlation across potential wages is captured by latent state variables—en and Pn,t—so the productivity shocks can be
treated as residual errors.

14Unlike in dynamic discrete choice models, where the parameters governing the distribution of idiosyncratic shocks
are typically not point identified, here we can obtain point identification of these parameters by exploiting the additional
information provided by the wage distribution.
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distinct large thresholds 0 < w0 < w1 < · · · < wp1 . Define the function

Φ1,x :M1 → Rp1 , Φ1,x(µ1) :=

(
Sϵn(1)(w1 − y(1, x);µ1)

Sϵn(1)(w0 − y(1, x);µ1)
, . . . ,

Sϵn(1)(wp1 − y(1, x);µ1)

Sϵn(1)(w0 − y(1, x);µ1)

)
,

where Sϵn(1) denotes the survival function of ϵn(1). If Φ1,x is injective, then the parameter µ1

is identified. An analogous statement holds for ϵn(0).

(b) (Joint Identification.) Let Fϵn denote the joint CDF of ϵn, and Fϵn(1)(·;µ1), Fϵn(0)(·;µ0) the

identified marginal CDFs from part (a).

• Independence. If ϵn(1) and ϵn(0) are mutually independent, then

Fϵn(v1, v0) = Fϵn(1)(v1;µ1)Fϵn(0)(v0;µ0) ∀ (v1, v0) ∈ R2.

• Parametric copula. If a copula Cµ is specified so that

Fϵn(v1, v0) = Cµ
(
Fϵn(1)(v1;µ1), Fϵn(0)(v0;µ0)

)
∀ (v1, v0) ∈ R2,

and the copula parameter µ is known, then Fϵn is identified.

• No dependence restrictions (partial identification). Absent further restrictions on the

dependence between ϵn(1) and ϵn(0), the joint CDF is partially identified by the sharp

Fréchet–Höffding bounds:

max
{
Fϵn(1)(v1;µ1) + Fϵn(0)(v0;µ0)− 1, 0

}
≤ Fϵn(v1, v0) ≤

min
{
Fϵn(1)(v1;µ1), Fϵn(0)(v0;µ0)

}
∀ (v1, v0) ∈ R2.

In Appendix D, which contains the proof of Corollary 1, we provide examples of common para-

metric families that satisfy the injectivity condition in (a), including both thin-tailed and heavy-tailed

distributions.

We conclude by noting that the quantile approach in Proposition 3 extends to wage specifications

in which the shock ϵn(1) is multiplied by a scale function σ(1, Xn); see Proposition 13 in Ap-

pendix B.4. This covers, for example, equilibrium wage equations arising in search models, where

conditional heteroskedasticity is an inherent feature (Bagger et al., 2014); see Appendix C for the

extension of our identification arguments to search models. More broadly, our quantile approach

does not rely on the exact mechanism that generates job choices Dn,t in the class of models we study
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and can accommodate arbitrary dependence between those choices and the unobserved shocks ϵn,t.

It is therefore quite general and applies to any class of models that produces a wage equation with a

structure resembling equation (9).1516

3.2 Our Identification Approach

Here we re-sketch our identification strategy, organised by the classes of primitives of interest and

building on the review in Section 3.1. The full, formal arguments appear in Section 4.

Information Technology, Deterministic Wage Component, and Shock Distribution. Return to

the general wage equation (8). To adapt Proposition 3 to our setting for identifying the deterministic

wage component φ(·) := y(·) + Ψ(·), we must first know the distribution of wn,t conditional on

(Dn,t, sn,t). The sampling process does not reveal this distribution directly because Pn,t and en are

unobserved. Consequently, we must identify it. We proceed in three steps. First, we express the dis-

tribution of wn,t conditional on (Hn,1, D
t
n)—which is observed under Assumption 1—as a mixture

over worker n’s efficiency en and signal history at−1
n := (an,1, . . . , an,t−1). Using existing results on

the identification of mixture models—in particular, the assumption that the wage distribution admits

a generalised finite mixture representation (a finite mixture whose components are (potentially con-

tinuous) Gaussian mixtures)—we identify the mixture weights and components of the wage mixture

(Proposition 4).

Second, by concatenating the mixture weights across periods, we identify the signal distribution

conditional on the latent ability θn and the prior belief function. In turn, we recover the posterior

belief in each period by recursively computing it from (3) (Proposition 5).

Third, given the identification of the learning process and the fact that, in the model, the vector

of state variables sn,t is a deterministic function of (Hn,1, D
t−1
n , en, a

t−1
n ), it follows that we identify

the distribution of wn,t conditional on (Dn,t, sn,t) (Proposition 9).

Having recovered the distribution of wn,t given (Dn,t, sn,t), we adapt the quantile argument of

Proposition 3 to identify the deterministic wage component φ(·) := y(·) + Ψ(·) (Proposition 10).

Lastly, once this deterministic wage component is recovered, we identify the unconditional distribu-
15Some papers not discussed in our (incomplete) literature overview of the Roy model show that the deterministic

component of wages can be identified without exclusion restrictions and at-infinity arguments, provided we observe at
least as many continuous worker attributes as there are job alternatives. See, for instance, Lee and Lewbel (2013) and
Kim and Lee (2025). However, as already mentioned, standard employer-employee match datasets, such as the LEHD
dataset, do not contain continuous worker attributes.

16Our overview has focused on the static Roy model. Dynamic extensions of these arguments in the literature often
rely on additional simplifying assumptions, such as directional and irreversible choices and the presence of absorbing
states. For instance, in the schooling context studied by Taber (2000), students acquire one degree at a time; once a
degree is earned, it cannot be revoked, and withdrawing from a degree program effectively precludes reentry. None of
these restrictions applies to our framework, nor are they required for our identification arguments.

30



tion of the vector of productivity shocks ϵn,t by adapting Corollary 1 (Corollary 4).

Law of Motion of the State and CCPs. The wage mixture weights not only help us identify the

deterministic wage component φ(·) := y(·) + Ψ(·) but are also key to identifying other objects of

interest, such as the law of motion of the state variables, Pr(sn,t | Dn,t−1, sn,t−1), and the CCPs,

Pr(Dn,t | sn,t) (Propositions 7 and 8). Intuitively, recall that the mixture weights essentially deter-

mine the distribution of (Hn,1, D
t−1
n , en, a

t−1
n ) in each period, which in turn governs the state vari-

ables sn,t and subsequently the occupation choices. Thus, by appropriately combining these weights

across periods, it becomes natural to recover the law of motion of sn,t and the CCPs. Notably, in

contrast to the typical method of recovering CCPs from agents’ discrete choices in dynamic models,

here the CCPs are identified from the continuous part of the data, that is, the wage distribution.

Output (and Human-Capital) Technology and Compensating Differential. Beyond identifying

the deterministic wage component φ(·) := y(·)+Ψ(·), we further separate within φ(·) the output (and

human-capital) technology y(·) from the compensating differential Ψ(·). Specifically, the market-

wide job allocation can be represented as a pseudo-planner (single-agent) dynamic discrete decision

problem. Therefore, given the CCPs and the distribution of productivity shocks, y(·) is identified by

standard arguments for dynamic discrete choice models (for instance, Magnac and Thesmar, 2002;

see Proposition 11). With y(·) in hand, Ψ(·) follows residually from φ(·) (Corollary 5, Part I).

Similarly, once y(·) is known, we can net out the deterministic labor-input component ℓ(·), thereby

completing the recovery of the output (human-capital) technology (Corollary 5, Part II).

4 Formal Identification Argument

We now formally illustrate the identification approach previewed in Section 3.

4.1 Relevant Market

Our overview in Section 3 has been silent on the role played by the second-best firm D′
n,t, which

appears in the wage equation and remains unobserved under Assumption 1. This was intentional:

we wanted the reader to focus on other, more pressing identification challenges that arise in our

framework. With the standard data assumed under Assumption 1 and in the absence of further

restrictions on the model,D′
n,t is not identified, as is well understood in the literature. This paper does

not provide new results on that front. In this section, we therefore introduce a standard assumption

that allows us to sidestep this non-identification problem and proceed with the analysis.

Assumption 2 (Relevant Market).(i) In each period t, conditional on the worker’s state sn,t, the set

of firms making offers—worker n’s “relevant market” or “choice set”—depends only on sn,t and not
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on ϵn,t, and has size 2. We denote this relevant market by Dt(sn,t) ⊆ D, with |Dt(sn,t)| = 2. (ii) The

correspondence sn,t 7→ Dt(sn,t) is known to the econometrician. ⋄

Assumption 2(i) requires that, in each period t, the set of firms offering a job to worker n (worker

n’s “relevant market” or “choice set”) is a function of sn,t only and contains exactly two firms. Limit-

ing offers to a small number of firms is realistic in many labor markets. Restricting this set to depend

only on sn,t and to contain exactly two offers is technically helpful: conditional on the first-best firm

Dn,t and the state sn,t, the second-best firm D′
n,t entering the wage equation (8) is already implicitly

conditioned on and need not be modelled as an additional stochastic index. Therefore, the distribu-

tion of wn,t conditional on (Dn,t, sn,t) is fully determined by the distribution of ϵn,t conditional on

(Dn,t, sn,t), which is used in the arguments below.

Assumption 2(ii) requires that the correspondence from sn,t to worker n’s choice set Dt(sn,t) be

known to the econometrician. Combined with Assumption 2(i), this implies that, conditional on the

first-best firm Dn,t and the state sn,t, the second-best firm D′
n,t is not only already implicitly condi-

tioned on but also known to the researcher. While Assumption 2(ii) is not required to identify the

information technology, law of motion of the state, and CCPs, we exploit it to identify components

of the wage equation that are indexed by both the first- and second-best firm, namely φ(·), y(·), and

Ψ(·), in order to avoid any labelling indeterminacy. We will be explicit about when and how each

part of Assumption 2 is used.

This two-firm, known choice-set assumption is standard in the empirical labor literature and

preserves the familiar incumbent-poacher structure of search models.

4.2 Wage Mixture

In this section, we represent the cross-sectional wage distribution at time t, conditional on worker n’s

observed initial human capital Hn,1 and occupational history Dt
n := (Dn,1, . . . , Dn,t), as a mixture

over latent classes indexed by the efficiency type en and by the history of noisy performance signals

at−1
n := (an,1, . . . , an,t−1) about θn. Specifically, by the law of total probability, the conditional

distribution of wages wn,t can be expressed as the following mixture:

Pr
(
wn,t ≤ w | Hn,1, D

t
n

)
=

∑
(e,at−1)∈E×At−1

Pr
(
wn,t ≤ w | Hn,1, D

t
n, en = e, at−1

n = at−1
)

× Pr
(
en = e, at−1

n = at−1 | Hn,1, D
t
n

)
,

(19)

where the sets E , A, and At−1 denote the (unconditional) finite supports of en, an,t, and at−1
n , respec-

tively; e and at−1 denote generic realisations of en and at−1
n , respectively, with at−1 := (a1, . . . , at−1);
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Pr
(
wn,t ≤ w | Hn,1, D

t
n, en = e, at−1

n = at−1
)

corresponds to a mixture component; and Pr
(
en =

e, at−1
n = at−1 | Hn,1, D

t
n

)
corresponds to the associated mixture weight. In what follows, we show

identification of these mixture components and weights.

Before presenting the assumptions and results, we introduce some useful notation. Because of

Assumption 2(i), not all realisations of the observables (Hn,1, D
t
n) in H×Dt need occur with strictly

positive probability. We henceforth denote by Heff
t ⊆ H × Dt the set of realisations (h, dt) of

(Hn,1, D
t
n) such that Pr(Hn,1 = h,Dt

n = dt) > 0, with dt := (d1, . . . , dt). Similarly, conditional on

(Hn,1, D
t), not all realisations of the unobservables (en, at−1

n ) in E × At−1 need occur with strictly

positive probability. We henceforth denote by Leff
h,dt ⊆ E × At−1 the set of realisations (e, at−1) of

(en, a
t−1
n ) such that Pr

(
en = e, at−1

n = at−1 | Hn,1 = h, Dt
n = dt

)
> 0. Assumption 3 sets out the

conditions used to identify the mixture components and weights in equation (19).

Assumption 3 (Generalised Finite Mixture).For each t ≥ 1 and (h, dt−1, d) ∈ Heff
t , assume:

(i) (Mixture of Normals.) For each E × At−1 and conditional on (Hn,1 = h, Dt
n = dt en =

e, at−1
n = at−1), the productivity shock of the second-best firm D′

n,t = d′t ∈ D, ϵn,t(d′t, e),

is distributed as a mixture of a, possibly uncountable, family of Gaussian distributions. For-

mally, let fd′t,e(· | Hn,1 = h,Dt
n = dt, en = e, at−1

n = at−1) denote the density of ϵn,t(d′t, e)

conditional on (Hn,1 = h,Dt
n = dt, en = e, at−1

n = at−1). Then, for each r ∈ R,

fd′t,e(r | Hn,1 = h,Dt
n = dt, en = e, at−1

n = at−1)

=

∫
(µ,σ2)∈Gh,dt,e,at−1

N (r;µ, σ2)dπ(µ, σ2;h, dt, e, at−1),

where N (·;µ, σ2) is the Gaussian density with mean µ and variance σ2; Gh,dt,e,at−1 ⊂ R ×

(0,∞) is the (possibly unknown) support of the Gaussian parameters (µ, σ2) conditional on

(Hn,1 = h,Dt
n = dt, en = e, at−1

n = at−1); and π(·;h, dt, e, at−1) is a Borel probability

measure on Gh,dt,e,at−1 , representing the distribution of (µ, σ2) conditional on (Hn,1 = h,Dt
n =

dt, en = e, at−1
n = at−1).

(ii) (Supports.) The supports E of en and A of an,t are known finite sets.

(iii) (Compactness.) For each (e, at−1) ∈ E × At−1, the set Gh,dt,e,at−1 is a compact subset of

R× (0,∞).
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(iv) (Continuity and Measurability.) For each (e, at−1) ∈ E × At−1, the map

(µ, σ2) 7→ N (r;µ, σ2)

is continuous on Gh,dt,e,at−1 for every r ∈ R, and the map

(r, µ, σ2) 7→ N (r;µ, σ2)

is Borel-measurable on R× R× (0,∞).

(v) (Non-Overlap.) There exists a Borel subset Gh,dt,e,at−1 ⊆ Gh,dt,e,at−1 ⊂ R × (0,∞) such

that π(Gh,dt,e,at−1 ;h, dt, e, at−1) = 1 for each (e, at−1) ∈ Leff
h,dt . Moreover, Gh,dt,e,at−1 ∩

Gh,dt,ẽ,ãt−1 = ∅ for each (e, at−1) ̸= (ẽ, ãt−1) with (e, at−1), (ẽ, ãt−1) ∈ Leff
h,dt .

⋄

Proposition 4 formalises the identification result under Assumption 3.

Proposition 4 (Wage Mixture). Let Assumptions 1, 2(i), and 3 hold. Then, for each 1 ≤ t ≤ T and

(h, dt) ∈ Heff
t :

(i) The probability Pr
(
en = e, at−1

n = at−1 | Hn,1 = h, Dt
n = dt

)
is identified for each

(e, at−1) ∈ E × At−1.

(ii) The probability Pr
(
wn,t ≤ w | Hn,1 = h, Dt

n = dt, en = e, at−1
n = at−1

)
is identified for

each (e, at−1) ∈ Leff
h,dt and w ∈ R.

(iii) The set Leff
h,dt ⊆ E ×At−1 is identified.

Assumption 3(i) imposes that, conditional on (Hn,1 = h, Dt
n = dt, en = e, at−1

n = at−1), the

productivity shock of the second-best firm d′t at time t, ϵn,t(d′t, e), is distributed as a mixture of a (pos-

sibly uncountable) family of Gaussian distributions. Combined with Assumptions 2(i) and 3(ii), this

implies that the wage mixture in equation (19) is a finite mixture whose components are (possibly un-

countable) Gaussian mixtures.17 To see why, recall our wage equation (8) and that, in the model, the

state vector sn,t := (Hn,1, κn,t, Pn,t, en) is a deterministic function of (Hn,1, D
t−1
n , en, a

t−1
n ). Hence,

by conditioning each mixture component in (19) on (Hn,1, D
t
n, en, a

t−1
n ), we implicitly condition

17We remark that the wage mixture in equation (19) is not assumed to be a finite mixture of Gaussians.
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on the state sn,t entering (8) as well. In turn, under Assumption 2(i), this also entails implic-

itly conditioning on the second-best firm D′
n,t entering (8). Therefore, each mixture component

Pr
(
wn,t ≤ w | Hn,1 = h, Dt

n = dt, en = e, at−1
n = at−1

)
in (19) is fully determined by the

distribution of the productivity shock of the second-best firm D′
n,t = d′t ∈ D at time t, ϵn,t(d′t, e),

conditional on (Hn,1 = h, Dt
n = dt, en = e, at−1

n = at−1). By Assumption 3(i), this distribution

is a mixture of a (possibly uncountable) family of Gaussian distributions, and since en and at−1
n can

take only finitely many values under Assumption 3(ii), it follows that the distribution of wn,t con-

ditional on (Hn,1 = h, Dt
n = dt) is a finite mixture whose components are (possibly uncountable)

Gaussian mixtures.

We call a distribution admitting a finite mixture representation whose components are (possibly

uncountable) Gaussian mixtures a generalised finite mixture. Such two-layer mixture models are

known to approximate any distribution arbitrarily well (Nguyen and McLachlan, 2019). This class is

therefore well suited to model general distributions that need not follow a standard parametric form.

This generality is particularly important in our setting, where, as explained above, each mixture

component in (19) is fully determined by the distribution of the productivity shock of the second-

best firm, ϵn,t(d′t, e), conditional on (Hn,1 = h, Dt
n = dt, en = e, at−1

n = at−1) and, therefore, is

“contaminated” by workers selecting jobs based on the unobserved vector of shocks ϵn,t. We should

not expect this conditional distribution to coincide with the unconditional distribution of ϵn,t(d′t, e)

(that is, the family need not be closed under conditioning), nor to have a “standard” parametric form

such as Normal or Gumbel.18 Instead, this conditional distribution is endogenously determined by

how workers and firms make decisions within the model. Therefore, we must rely on assumptions

that allow for very flexible distributions, as Assumption 3(i) does.

Assumption 3(ii) posits that efficiency en and signal at−1
n have finite unconditional supports, E

and At−1, with known cardinalities. Proposition 4(iii) identifies the conditional support of these

random objects, namely the subset Leff
h,dt ⊆ E × At−1. In Appendix A, we discuss how to relax this

assumption and allow en and an,t to be continuous multidimensional random vectors.

Assumptions 3(iii) and (iv) are regularity conditions requiring that all Gaussian means and vari-

ances (µ, σ2) that can arise lie in a bounded rectangle, with variances bounded away from 0 and ∞,

and that all Gaussian densities involved vary continuously with (µ, σ2), with the kernels measurable

18By “closure under conditioning” we mean that, if a random vector ϵ follows a given parametric family Fθ, then
for any selection event A defined in terms of ϵ, the conditional distribution ϵ | A still belongs to the same family, i.e.
ϵ | A ∼ Fθ′ for some θ′. This is a very strong requirement and is satisfied only by a few special families, such as i.i.d.
type-I extreme value (Gumbel) shocks in multinomial logit models.
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in all their arguments.

Lastly, Assumption 3(v) is a standard separation condition in the identification of mixture models

and requires that the mixing distributions {π(·;h, dt, e, at−1) : (e, at−1) ∈ Leff
h,dt} place all their mass

on pairwise disjoint sets Gh,dt,e,at−1 ⊆ Gh,dt,e,at−1 in the (µ, σ2)-space. Otherwise, they could not be

separately distinguished. Importantly, it does not require the densities {fd′t,e(r | Hn,1 = h,Dt
n =

dt, en = e, at−1
n = at−1) : (e, at−1) ∈ Leff

h,dt}, and so the wage mixture components, to have disjoint

supports, and instead allows them to overlap arbitrarily.

We establish Proposition 4 as a straightforward application of Bruni and Koch (1985). Specifi-

cally, the wage mixture (19) corresponds to the mixture model discussed in Section 4.c of Bruni and

Koch (1985) and is shown to be identified under Assumptions 1, 2(i), and 3.

As an alternative to the approach set out by Assumption 3 and Proposition 4, we have examined

the applicability of two identification strategies in the mixture-model literature. The first approach

uses exclusion restrictions, that is, variables that enter either the mixture weights or the mixture com-

ponents, but not both (Henry et al., 2014; Compiani and Kitamura, 2016; Jochmans et al., 2017).

The second approach considers the joint distribution of the entire vector of wages (wn,1, . . . , wn,T ),

rather than focusing on the cross-sectional wage distribution at each time t as in (19), and relies on

assumptions that simplify the temporal dependence of wages, such as conditional independence or

Markovianity, together with a constant number of latent classes over time (Hall and Zhou, 2003;

Allman et al., 2009; Kasahara and Shimotsu, 2009; Bonhomme et al., 2016a,b). Neither approach is

suitable for our framework. In the class of models we consider, exclusion restrictions do not arise:

any variable that affects the conditional distribution of efficiency types and signals also affects the

conditional distribution of wages, and vice versa. Moreover, wage observations are neither condi-

tionally independent over time nor Markovian, and the number of latent classes over which we mix

increases with t because of the growing dimension of the vector of performance signals at−1
n . More

broadly, human capital accumulation and learning imply that there is no sufficiently time-invariant

structure for the wage time series to be useful for identification. Given these considerations, we view

the approach set out by Assumption 3 and Proposition 4 as the best compromise between generality

and the key features of class of models we study.

Despite the extreme flexibility of the class of mixtures embraced by Assumption 3, Proposition

4 can also be extended to fully nonparametric mixture families. In particular, Aragam et al. (2020)

propose a criterion known as the “clusterability” condition, which is sufficient for identification.

Intuitively, this condition essentially requires that the mixture components are “sufficiently distinct,”
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as quantified by an appropriate distance measure—a notion that can already be found in Teicher

(1961, 1963)’s earlier discussion of mixture identifiability. Not only is this condition met in the

setting described by Bruni and Koch (1985), but it applies to a wide range of other mixtures.

Finite mixture models can only be identified up to the labeling of their components because the

likelihood is invariant to permutation of the components. In our setting, we can resolve the labeling

indeterminacy by examining the moments of the mixture components, for example, by using their

variances to order them with respect to en and their means to order them with respect to at−1
n .

Lastly, as an immediate implication of Proposition 4, we identify the joint distribution of histories

of signals by combining the wage mixture weights across periods. We report below the identification

of two specifications of signal histories that will be useful for the arguments that follow.

Corollary 2 (Signal Distribution). Assume:

(i) Assumption 1 holds.

(ii) The wage mixture weights in (19) are identified at times t and t+ 1, with t ∈ {1, . . . , T − 1}.

See Proposition 4 for sufficient conditions.

Then, the conditional signal distribution

Pr
(
atn = at | Hn,1 = h, Dt

n = dt, en = e
)
,

is identified for each (at, h, dt, e) ∈ At ×H × Dt × E such that Pr
(
Hn,1 = h, Dt

n = dt
)
> 0 and

Pr
(
en = e | Hn,1 = h, Dt

n = dt
)
> 0, where at := (a1, . . . , at) and dt := (d1, . . . , dt).

Corollary 3 (Signal Distribution and Job Retention). Assume:

(i) Assumption 1 holds.

(ii) The wage mixture weights in (19) are identified at times t+2 and t+3, with t ∈ {1, . . . , T−3}.

See Proposition 4 for sufficient conditions.

Then, the conditional distribution of three consecutive signals at job d,

Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e

)
,

is identified for each (at, at+1, at+2, h, d, e) ∈ A3 × H × D × E such that Pr
(
Hn,1 = h, Dn,t =

d, Dn,t+1 = d, Dn,t+2 = d
)
> 0, and Pr

(
en = e | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 =

d
)
> 0.

37



4.3 Information Technology

In this section, we use the wage mixture weights in (19), identified by Proposition 4, to recover each

firm’s information technology, that is, the prior and posterior beliefs generated under any sequences

of jobs and signals. To this end, we first introduce an assumption that disciplines the distribution of

signals conditional on the latent ability θn.

Assumption 4 (Signal Distribution Conditional on Ability). (i) A := {ā, a} and Θ := {θ̄, θ}.

(ii) Signals are conditionally independent over time. That is, for each t ∈ {1, . . . , T − k} and

integer k > 0,

Pr
(
an,t, . . . , an,t+k | Hn,1, Dn,t, . . . , Dn,t+k, en, θn

)
=

t+k∏
j=t

Pr
(
an,j | Hn,1, Dn,j, en, θn

)
.

(iii) The distribution of an,t conditional on (Hn,1, Dn,t, en, θn) is time-invariant, with

α(h, d, e) := Pr
(
an,t = ā | Hn,1 = h, Dn,t = d, en = e, θn = θ̄

)
,

β(h, d, e) := Pr
(
an,t = ā | Hn,1 = h, Dn,t = d, en = e, θn = θ

)
,

for each (h, d, e) ∈ H ×D × E , and α(h, d, e) > β(h, d, e).

⋄

Proposition 5 formalises the identification result under Assumption 4.

Proposition 5 (Information Technology). Suppose that:

(i) Assumption 4 hold.

(ii) Let (h, d, e) ∈ H×D × E . For some t ∈ {1, . . . , T − 3}, the conditional distribution of three

consecutive signals at job d,

Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e

)
,

is identified for each (at, at+1, at+2) ∈ A3, and the conditional distribution of the initial signal

at job d,

Pr(an,1 = a | Hn,1 = h, Dn,1 = d, en = e)
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is identified for each a ∈ A. Condition (ii) is required to hold for each (h, d, e) ∈ H×D×E ,

possibly with t varying across (h, d, e). See Corollaries 2 and 3 for sufficient conditions.

Then, α(h, d, e), β(h, d, e), the prior belief Pr(θn = θ̄ | Hn,1 = h, en = e), and the set of realiza-

tions of the posterior beliefs {Pn,t}Tt=2 are identified for each (h, d, e) ∈ H ×D × E .

Assumption 4(i) imposes that the signal an,t and the latent ability θn have finite supports. We

already adopted this assumption in Section 2 to simplify the description of the learning process; see,

for instance, equation (3). It is therefore convenient to maintain it when identifying this learning

process. In Appendix A, we discuss how this assumption can be relaxed to allow for continuous

and multidimensional an,t and θn. Assumption 4(ii) imposes that signals are independent over time

conditional on the history of jobs and θn, while Assumption 4(iii) requires that the distribution of

an,t conditional on the chosen job and θn is time-invariant and described by the parameters α(h, d, e)

and β(h, d, e). This is a standard requirement for identifying the information technology: if that

distribution varied over time, we could not recover belief dynamics solely from observing workers

switching jobs. Assumption 4(iii) also imposes α(h, d, e) > β(h, d, e), which is a natural restriction

since high-ability types are more likely to generate high signals.

In addition to Assumption 4, Proposition 5 also builds on Corollaries 2 and 3. In particular,

condition (ii) of Proposition 5 requires the identification of the conditional distribution of three con-

secutive signals at job d to be identified, for which sufficient conditions are provided by Corollary 2,

and of the conditional distribution of the initial signal at job d, for which sufficient conditions are pro-

vided by Corollary 3. These sufficient conditions essentially amount to the identification of certain

wage mixture weights in (19). See the remark at the end of the proof of Proposition 5 in Appendix D

for a clarification of these sufficient conditions.

The proof of Proposition 5 is straightforward and makes clear where each restriction is used.

Under Assumption 4, we can represent the identified (under condition (ii) of Proposition 5) dis-

tribution Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 =

d, Dn,t+2 = d, en = e
)

as a binomial mixture over θn with two components, characterized by

α(h, d, e) and β(h, d, e), and three trials. The components of this mixture can therefore be identified

using the results in Blischke (1964, 1978) for binomial mixtures. This explains why condition (ii)

of Proposition 5 requires observing workers employed at job d for three consecutive periods: by

Blischke (1964, 1978), at least three trials are needed to identify two binomial mixture compo-

nents. Still using Assumption 4, we can represent the identified (under condition (ii) of Proposi-
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tion 5) distribution Pr(an,1 = a | Hn,1 = h, Dn,1 = d, en = e) as a Bernoulli mixture over θn

with two components, again characterized by α(h, d, e) and β(h, d, e), and with mixture weights

Pr(θn = θ̄ | Hn,1 = h, en = e) and 1 − Pr(θn = θ̄ | Hn,1 = h, en = e). Since α(h, d, e) and

β(h, d, e) are already identified, we can readily identify Pr(θn = θ̄ | Hn,1 = h, en = e). In turn,

the set of realizations of the posterior beliefs {Pn,t}Tt=2 is identified, since each Pn,t can be computed

recursively as in equation (3) using α(h, d, e), β(h, d, e), and Pr(θn = θ̄ | Hn,1 = h, en = e).

4.4 Law of Motion of the State and Conditional Choice Probabilities

In this section, we use the wage mixture weights and components in (19), identified by Proposition 4,

together with the information technology identified by Proposition 5, to recover the law of motion

of the state and the CCPs. As no additional assumptions are required, we state the formal results

directly and provide some intuition afterwards.

Proposition 6 (Unconditional Distribution of the State). Let t ∈ {1, . . . , T}. Suppose that:

(i) Assumption 1 holds.

(ii) The wage mixture weights in (19) are identified at time t. See Proposition 4 for sufficient

conditions.

(iii) α(h, d, e), β(h, d, e), the prior belief Pr(θn = θ̄ | Hn,1 = h, en = e), and the set of realiza-

tions of the posterior belief Pn,t are identified for each (h, d, e) ∈ H×D×E . See Proposition 5

for sufficient conditions.

Then,

(i) The map from realizations of (Hn,1, D
t−1
n , en, a

t−1
n ) to realizations of sn,t := (Hn,1, κn,t, Pn,t, en)

is identified. Denote this map by gt, that is,

(Hn,1, D
t−1
n , en, a

t−1
n ) 7→ sn,t = gt(Hn,1, D

t−1
n , en, a

t−1
n ),

and denote by It the image of gt.

(ii) The unconditional distribution of sn,t on It is identified. We denote by St ⊆ It the set of all

s ∈ It such that Pr(sn,t = s) > 0, and hereafter refer to St as the support of sn,t.

The proof of Proposition 6 is straightforward. Given that the set E is known under Assump-

tion 3(ii), Hn,1 is observed, κn,t is a known function of Dt−1
n , and Pn,t is identified by Proposi-

tion 5, we identify the map gt from realisations of (Hn,1, D
t−1
n , en, a

t−1
n ) to realisations of sn,t :=
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(Hn,1, κn,t, Pn,t, en). The joint distribution of (Hn,1, D
t−1
n , en, a

t−1
n ) is identified from Proposition 4(i)

at time t. Given knowledge of this distribution and the map gt from realisations of (Hn,1, D
t−1
n , en, a

t−1
n )

to realisations of sn,t, we identify the unconditional distribution of sn,t on St.

Proposition 7 (Law of Motion of the State). Suppose that:

(i) Assumption 1 holds.

(ii) For t ∈ {2, . . . , T}, the wage mixture weights in (19) are identified at times t − 1 and t,

together with the state maps, gt−1 and gt, and supports, St−1 and St. See Propositions 4 and 6

for sufficient conditions.

Then, the law of motion of the state,

Pr(sn,t = s | Dn,t−1 = d, sn,t−1 = s̃),

is identified for each s ∈ St, d ∈ D, and s̃ ∈ St−1 such that Pr(Dn,t−1 = d | sn,t−1 = s̃) > 0.

Proposition 8 (Conditional Choice Probabilities). Suppose that:

(i) Assumption 1 holds.

(ii) For t ∈ {1, . . . , T}, the wage mixture weights in (19) are identified at times t, together with

the state map, gt, and support, St. See Propositions 4 and 6 for sufficient conditions.

Then, the conditional choice probability,

Pr(Dn,t = d | sn,t = s),

is identified for each d ∈ D and s ∈ St.

Proposition 7 follows directly from combining the wage mixture weights at times t − 1 and t,

while Proposition 8 relies on Bayes’ rule and the wage mixture weights at time t. Proposition 8 is

particularly interesting because, in contrast to the typical approach of deriving CCPs from agents’

discrete choices in dynamic models, here the CCPs are identified from the continuous part of the

data, namely the wage distribution.
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4.5 Deterministic Wage Component and Productivity Shocks

In this section, we identify the deterministic wage component φ(·) := y(·)+Ψ(·) and the distribution

of the productivity-shock vector ϵn,t by extending Proposition 3 and Corollary 1 from the simple

static Roy model to our general class of dynamic models.

Since the deterministic wage component φ(·) is indexed by both the first- and second-best firms,

Dn,t and D′
n,t, the arguments in this section exploit Assumption 2(ii)—which has not been used so

far—in order to identify φ(·) without any labelling indeterminacy with respect to the second-best

firm’s identity. In particular, as preliminary ingredients, we recover the distribution of wages wn,t

conditional on (Dn,t, D
′
n,t, sn,t) and the distribution of Dn,t conditional on (D′

n,t, sn,t).

Proposition 9 (Conditional Wage Distribution and Choice Probabilities). Suppose that:

(i) Assumptions 1 and 2 holds.

(ii) For t ∈ {1, . . . , T}, the wage mixture weights and components in (19) at time t are identi-

fied, together with the state map, gt, and support, St. See Propositions 4 and 6 for sufficient

conditions.

Then, the conditional wage distribution

Pr(wn,t ≤ w | Dn,t = d, D′
n,t = d′, sn,t = s),

is identified for each w ∈ R, s ∈ St, and (d, d′) ∈ D2 such that Pr(Dn,t = d, D′
n,t = d′ | sn,t =

s) > 0. The conditional choice probability

Pr(Dn,t = d | D′
n,t = d′, sn,t = s),

is identified for each s ∈ St and (d, d′) ∈ D2 such that Pr(D′
n,t = d′ | sn,t = s) > 0.

Intuitively, the distribution of wn,t conditional on (Hn,1, D
t
n, en, a

t−1
n ) is identified from the wage

mixture components in (19) at time t. Using this distribution, together with the map gt from real-

isations of (Hn,1, D
t−1
n , en, a

t−1
n ) to realisations of sn,t, we identify the distribution of wn,t condi-

tional on (Dn,t, sn,t). Furthermore, under Assumption 2(i), conditioning on (Dn,t, sn,t) also implic-

itly conditions on the second-best firm D′
n,t, which enters the wage equation (8). Under Assump-

tion 2(ii), we know which firm is D′
n,t. Therefore, we identify the distribution of wn,t conditional
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on (Dn,t, D
′
n,t, sn,t). Similarly, the distribution of Dn,t conditional on (D′

n,t, sn,t) is identified by

Proposition 8, using the wage mixture components in (19) at time t, and Assumption 2.

Based on Proposition 9, we can now extend Proposition 3 and Corollary 1 to identify the deter-

ministic wage component φ(·) := y(·) + Ψ(·) and the distribution of the productivity-shock vector

ϵn,t. We begin by introducing notation to formalize the results. Given e ∈ E , recall that sn,t(e)

denotes the vector sn,t evaluated at en = e ∈ E and ϵn,t(e) := (ϵn,t(d, e) : d ∈ D). Let St(e) ⊆ St
denote the support of sn,t(e), identified by Proposition 6. Given (d, d′, e) ∈ D2×E , let St(d, d′, e) ⊆

St(e) be the set of realizations s of sn,t(e) such that Pr
(
Dn,t = d, D′

n,t = d′
∣∣ sn,t(e) = s

)
> 0,

identified by Proposition 9. Given this notation, we can adapt Assumptions (i) to (v) of Proposition 3

to our setting.

Assumption 5 (Exogeneity).Let t ∈ {1, . . . , T} and e ∈ E . ϵn,t(e) is independent of sn,t(e). ⋄

Assumption 6 (Supports).Let t ∈ {1, . . . , T}, (d, d′) ∈ D2, e ∈ E , and s ∈ St(d, d′, e). Then,

inf{w : Pr(wn,t(d, d
′, e) ≤ w | sn,t(e) = s) > 0} = −∞,

inf{w : Pr(wn,t(d, d
′, e) ≤ w | Dn,t = d,D′

n,t = d′, sn,t(e) = s) > 0} = −∞.

⋄

Assumption 7 (Tail Limit).Let t ∈ {1, . . . , T}, (d, d′) ∈ D2, e ∈ E , and s ∈ St(d, d′, e). There

exists an (unknown) constant qt,d,d′,e ∈ (0, 1] such that

lim
w→−∞

Pr
(
Dn,t = d,D′

n,t = d′ | sn,t(e) = s, wn,t(d, d
′, e) < w

)
= qt,d,d′,e.

⋄

Assumption 8 (Tail Regularity).Let t ∈ {1, . . . , T}, (d, d′) ∈ D2, e ∈ E , and s ∈ St(d, d′, e). There

exist (unknown) thresholds wd,d′,s > −∞ and wobs
d,d′,s > −∞ such that the cumulative distribution

functions Fwn,t(d,d′,e)|sn,t(e)=s and Fwn,t(d,d′,e)|Dn=d,sn,t(e)=s are continuous and strictly increasing on

(−∞, wd,d′,s) and (−∞, wobs
d,d′,s), respectively. ⋄

Assumption 9 (Normalisation).Let t ∈ {1, . . . , T}, (d, d′) ∈ D2, and e ∈ E . There exists a known

s ∈ St(d, d′, e) with φ(d, d′, s) = 0. ⋄

Proposition 10 (Deterministic Wage). Let t ∈ {1, . . . , T}. Assume:
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(i) The set St(d, d′, e) is identified for each (d, d′) ∈ D2 and e ∈ E . The conditional probability

Pr
(
wn,t ≤ w

∣∣Dn,t = d, D′
n,t = d′, sn,t(e) = s

)
is identified for each (d, d′) ∈ D2, e ∈ E ,

and s ∈ St(d, d′, e). See Proposition 9 for sufficient conditions.

(ii) Assumptions 5 to 9 hold.

For (d, d′) ∈ D2, e ∈ E , and s ∈ St(d, d′, e), define

c(t, d, d′, s) :=
qt,d,d′,e

Pr(Dn,t = d,D′
n,t = d′ | sn,t(e) = s)

∈ (0,∞).

Let {τ (k)s̄ }k≥1 ⊂ (0, 1) be any sequence with τ (k)s̄ → 1 as k → +∞. Define

1− τ (k)s :=
c(t, d, d′, s)

c(t, d, d′, s̄)

(
1− τ

(k)
s̄

)
.

Then,

lim
k→+∞

[
Qwn,t |Dn,t=d,D′

n,t=d
′,sn,t(e)=s

(
τ (k)s

)
− Qwn,t |Dn,t=d,D′

n,t=d
′,sn,t(e)=s̄

(
τ
(k)
s̄

) ]
= φ(d, d′, s).

(20)

Hence, φ(d, d′, s) is identified for each (d, d′) ∈ D2, e ∈ E , and s ∈ St(d, d′, e).

Assumptions 5–9 mirror Assumptions (i) to (v) in Proposition 3, which are stated for the simple

static Roy model; we refer the reader to Section 3.1, where Proposition 3 is introduced, for a discus-

sion of the role of each assumption, including a sufficient condition for Assumption 7 that restricts

dependence among the shocks (see Lemma 1 in Appendix B.1).

There is one minor difference worth highlighting. In Assumptions 6–8, we focus on the left

extreme tails of the wage distributions, unlike the original construction of Proposition 3, which con-

siders the right tails. The proof works symmetrically for left tails. Focusing on the left tails ensures

that the quantity qt,d,d′,e remains strictly positive. By contrast, if we let w → +∞ (rather than

w → −∞), then Pr
(
Dn,t = d,D′

n,t = d′ | sn,t(e) = s, wn,t(d, d
′, e) > w

)
would go to zero due to

the equilibrium pricing mechanism in our model, which mirrors a second–price auction. Recall that,

in the class of models we study, the equilibrium wage for job d equals the expected output at the sec-

ond–best firm d′, y(d′, sn,t(e))+ ϵn,t(d′, e), plus a compensating differential Ψ(d, d′, sn,t(e)). Letting

the wage of job d go to +∞ while holding sn,t(e) fixed would effectively push the second–best firm’s

productivity shock ϵn,t(d′, e)—and hence the expected output and wage that firm d′ could offer—to

+∞. This would alter the equilibrium ranking of firms, making the former first-best firm d no longer

the best choice for worker n and driving qt,d,d′,e to zero. Focusing on left tails avoids this issue.
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Moreover, note that assuming unbounded left support for both the observed selected wages and

the potential wages (Assumption 6) is not essential. For example, it is often the case that the observed

selected wages are bounded away from zero in the data. A bounded–left-endpoint analogue proceeds

by tracking convergence to the finite endpoint rather than to −∞, with only minor adjustments.

See the discussion following Proposition 3 and Appendix B.2 for details on the bounded case. In

Appendix B.2, we further show that, when finite, the right and left endpoints of the potential wages

and shocks can be nonparametrically identified.

Also note that Assumption 9 imposes a location normalisation at one state for each pair of first-

and second-best firms, whereas Assumption (v) in Proposition 3 imposes a normalisation at one state

per firm. As discussed in connection with Proposition 3, wages in Roy-type models are identified

only up to an additive constant, so location normalisations are needed to pin down levels. Given that

potential wages in our class of models are indexed by both the first- and second-best firms, while

in the static Roy model they are indexed only by the first-best firm, it is natural that more location

normalisations are required here.

Lastly, nonparametric identification of the joint distribution of the shock vector ϵn,t(e) is not

feasible for the same reason as in the simple static Roy model of Section 3.1: we lack at least as many

continuous state variables as there are jobs (Tsiatis, 1975; Heckman and Honoré, 1989). In view of

this, we focus on recovering the marginal distributions of each ϵn,t(d, e) and show that, if ϵn,t(d, e)

belongs to a parametric family, its governing parameters are identified—by extending Corollary 1

to our general class of dynamic models. To identify the joint distribution of ϵn,t(e), we either add

an explicit independence assumption, impose a parametric copula, or work with Fréchet–Höffding

bounds for partial identification.1920

Corollary 4 (Identification of the Shock Distribution). For each t ≥ 1, d ∈ D, and e ∈ E , let Sd,e

denote the marginal survival function of ϵn,t(d, e). Let Fe denote the joint CDF of ϵn,t(e) and Fd,e

the marginal CDF of ϵn,t(d, e). Assume:

19As noted in Footnote 13, assuming independence between the wage shocks in the static Roy model can be restrictive,
because these shocks are the sole source of unobserved heterogeneity and may, in principle, embody substantial correla-
tion across potential wages. By contrast, in our broader class of dynamic models this assumption is less consequential:
structural correlation across potential wages is captured by latent state variables—en and Pn,t—so the productivity
shocks can be treated as residual errors.

20Restricting ϵn,t(d, e) to a parametric family does not render the generalised finite-mixture approach we use in Propo-
sition 4 superfluously general. Even if the unconditional distribution of ϵn,t(d′, e) is parametrically specified—as pre-
scribed by Corollary 4—the conditional distribution of ϵn,t(d′, e) given Dn,t—which determines the wage-mixture com-
ponents in Equation (19)—typically does not belong to the same parametric family. The only common case exhibiting
“closure under conditioning” is i.i.d. Type-I extreme value (Gumbel). However, the i.i.d. Gumbel specification is well
known to be ill-suited for dynamic discrete-choice models, as it implies Independence of Irrelevant Alternatives (IIA)
and leads to unrealistic substitution patterns.

45



(i) The set St(d, d′, e) is identified for each (d, d′) ∈ D2 and e ∈ E . The conditional probability

Pr
(
wn,t ≤ w

∣∣Dn,t = d, D′
n,t = d′, sn,t(e) = s

)
is identified for each (d, d′) ∈ D2, e ∈ E ,

and s ∈ St(d, d′, e). See Proposition 9 for sufficient conditions.

(ii) Assumptions 5 to 9 hold, implying that φ(d, d′, s) is identified for each (d, d′) ∈ D2, e ∈ E ,

s ∈ St(d, d′, e), and t ≥ 1 (Proposition 10).

(iii) For each d ∈ D and e ∈ E , ϵn,t(d, e) belongs to a known parametric family indexed by the

pd,e × 1 vector of parameters µd,e ∈Md,e ⊆ Rpd,e

Fix d ∈ D and e ∈ E . Consider some d′ ∈ D \ {d}, s ∈ St(d, d′, e), and t ≥ 1. Choose pd,e+1

distinct large thresholds 0 < w0 < w1 < · · · < wpd,e . Define the function Φd′,s :Md,e → Rpd,e as

Φd′,s(µd,e) :=

(
Sd,e(w1 − φ(d, d′, s);µd,e)

Sd,e(w0 − φ(d, d′, s);µd,e)
, . . . ,

Sd,e(wpd,e − φ(d, d′, s);µd,e)

Sd,e(w0 − φ(d, d′, s);µd,e)

)
.

If Φd′,s is injective, then the parameter µd,e is identified. Moreover, if the shocks {ϵn,t(d, e)}d∈D are

mutually independent across d ∈ D, then the joint distribution of ϵn,t(e) is identified as the product

of the identified marginals. Alternatively, if a copula Cµe is specified so that

Fe(v1, . . . , v|D|) = Cµe
(
F1,e(v1;µ1,e), . . . , F|D|,e(v|D|;µ|D|,e)

)
∀(v1, . . . , v|D|) ∈ R|D|,

and the copula parameter µe is known, then the joint distribution is identified from the identified

marginals and Cµe . Without further restrictions on the dependence among {ϵn,t(d, e)}d∈D, the joint

CDF is partially identified by the sharp Fréchet–Höffding bounds in that for all (v1, . . . , v|D|) ∈ R|D|,

max
{∑
d∈D

Fd,e(vd;µd,e)− (|D| − 1), 0
}

≤ Fe(v1, . . . , v|D|) ≤ min
d∈D

Fd,e(vd;µd,e).

4.6 Output, Human-Capital Technology, and Compensating Differential

Once the deterministic wage component φ(·) := y(·) + Ψ(·) is identified, the remaining objects to

recover are the output (human-capital) technology y(·) and its deterministic labour-input component

ℓ(·), together with the compensating differential Ψ(·). We first show how to identify y(·) using

standard arguments for dynamic discrete choice models. Given y(·), the components ℓ(·) and Ψ(·)

can then be obtained residually from y(·) and φ(·), respectively.

We start with the simplest case, in which the model’s equilibrium is efficient. Indeed, under As-

sumption 2(i), the equilibrium can be shown to be efficient. In an efficient equilibrium, job choices
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maximise the expected present discounted value of output. Hence, a worker’s choice of firm solves

a planning problem: a social planner assigns a job to each worker in each period. In other words, the

market-wide equilibrium allocation (matching workers to firms) reduces to a single-agent dynamic

decision problem. It follows that standard identification arguments for dynamic discrete choice mod-

els (for instance, Magnac and Thesmar, 2002) can be applied to identify y(·) from observed job

choices.

To elaborate, let Y
(
sn,t(e), ϵn,t(e)

)
denote the expected present discounted value of output pro-

duced by worker n with efficiency en = e ∈ E (equivalently, the expected present discounted social

surplus) at state
(
sn,t(e), ϵn,t(e)

)
. Then

Y
(
sn,t(e), ϵn,t(e)

)
= max

d∈Dt(sn,t(e))

{
y
(
d, sn,t(e)

)
+ ϵn,t(d, e)

+ δ [1− η(κn,t, d)] E
[
Y
(
sn,t+1(e), ϵn,t+1(e)

) ∣∣ sn,t(e), d] }.
By Propositions 7 and 8, the law of motion of sn,t(e), as well as the CCPs, are identified. The joint

distribution Fe of the shock vector ϵn,t(e) is identified by Corollary 4. The exogenous separation rate

η(κn,t, d) is nonparametrically identified by the fraction of employed workers at firm d with given

κn,t who exit at the end of the period. Therefore, y
(
d, sn,t(e)

)
is identified following Magnac and

Thesmar (2002) under standard normalisations in dynamic discrete choice models.

We now state the formal normalisation conditions and the identification result. Given (d, e) ∈

D × E , let St(d, e) ⊆ St(e) be the set of realizations s of sn,t(e) such that Pr
(
Dn,t = d

∣∣ sn,t(e) =
s
)
> 0, identified by Proposition 8.

Assumption 10 (Normalisation).For each e ∈ E , d ∈ D, and s ∈
⋃
t St(d, e), there exists d̃ ∈ D

such that s ∈
⋃
t St(d̃, e) and y(d̃, s) = 0. ⋄

Assumption 10 normalises y(·) to zero at one firm for each state. More precisely, to identify

y(d, s) for some d ∈ D and s ∈
⋃
t St(e), the worker must be able—at state realisation s—to choose

between d and at least one other firm d̃ with strictly positive probability, and y(d̃, s) is set to zero.

Proposition 11 (Output (Human-Capital) Technology). Let t ∈ {1, . . . , T}. Suppose that:

(i) The law of motion of state, Pr(sn,t | Dn,t−1, sn,t−1), and the CCPs, Pr(Dn,t | sn,t), are identi-

fied for each t ∈ {1, . . . , T}. See Propositions 7 and 8 for sufficient conditions.

(ii) The joint distribution Fe of the shock vector ϵn,t(e) is identified for each e ∈ E . See Corollary

4 for sufficient conditions.
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(iii) The discount factor δ is known.

(iv) The separation rates {η(κn,t, d)}d∈D are identified (immediate consequence of Assumption 1).

(v) Assumption 10 holds.

Then, the output (human-capital) technology y(d, s) is identified for each d ∈ D, e ∈ E , s ∈ St(d, e).

When firms consist of multiple jobs—for example, as in our empirical application where two

firms make wage offers each period and each firm operates multiple jobs—the equilibrium can be

inefficient. Even so, the identification of y(·) proceeds analogously to Proposition 11. Specifically,

the main difference in the multi-job case is that the market-wide equilibrium allocation problem

does not solve the planning problem but instead solves the pseudo-planning problem of maximizing

the match surplus for each firm d ∈ D. In this scenario, the one-period surplus when firm d does

not employ the worker equals the deterministic component of the wage paid by the employing firm.

Since the latter is identified, standard dynamic discrete choice arguments applied to each pseudo-

planning problem can once again be used to establish the identification of y(·). With y(·) known,

then ℓ(·) and Ψ(·) can then be obtained residually from y(·) and φ(·), respectively.

Corollary 5 (Compensating Differential and Deterministic Labor-Input Component). Let t ∈ {1,-

. . . , T}. Suppose that:

(i) The deterministic wage component φ(d, d′, s) is identified for each (d, d′) ∈ D2, e ∈ E , and

s ∈ St(d, d′, e). See Proposition 10 for sufficient conditions.

(ii) The output (human-capital) technology y(d, s) is identified for each d ∈ D, e ∈ E , and s ∈

St(d, e). See Proposition 11 for sufficient conditions.

Then, the compensating differential Ψ(d, d′, s) is identified for each (d, d′) ∈ D2, e ∈ E , and s ∈

St(d, d′, e). Moreover, under the additional normalisation E(an,t(d, e) | sn,t(e)) = 0 for each d ∈ D,

e ∈ E , and s ∈ St(d, e), the deterministic labour-input component ℓ(h, κ; d, e) is identified for each

(h, κ) ∈ H ×Kt.

4.7 Discussion: Longitudinal vs. Cross-Sectional Dimension

In this section, we provide a high-level overview of our identification strategy, focusing on how it

leverages both the longitudinal and cross-sectional dimensions of the data. First, we use the longitu-

dinal dimension to identify the information technology, the law of motion of the state, and the CCPs.

Indeed, these primitives are identified by concatenating the wage mixture weights across periods.
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Next, we identify the deterministic wage component φ(·) := y(·) + Ψ(·) by adapting Proposition

3’s approach in each period, thereby drawing on the cross-sectional dimension. Because φ(·) is left

nonparametrically specified and depends on sn,t—whose support may vary across periods—φ(·) is

effectively a time-varying function and must therefore be identified in each period, making the lon-

gitudinal dimension less helpful here. Finally, we once again leverage the dynamic dimension of

the model to identify the output (and human-capital) technology y(·), and in turn, the compensating

differential Ψ(·) and deterministic labour-input component ℓ(·).

A strength of our identification approach is its limited reliance on workers’ mobility across

jobs over time. Nonetheless, some heterogeneous variation in job choices—akin to job mobility—

facilitates identification of the output (human-capital) technology y(·) and the compensating differ-

ential Ψ(·). Regarding y(·), recall the standard normalizations in Assumption 10 (as in the dynamic

discrete choice literature), which fix the value of y(·) at one firm for each state. These deliver

nontrivial identification only if, at the same state, workers can choose employment at at least two

different firms with strictly positive probability. Regarding Ψ(·), note that for a given state realiza-

tion s ∈ St(e), the compensating differential of firm d relative to firm d′, Ψ(d, d′, s), is obtained by

subtracting the expected output y(d′, s)—identified from observing d′ as the first-best firm at state

s—from the deterministic wage component φ(d, d′, s)—identified from observing d′ as the second-

best firm at state s. Therefore, to identify Ψ(d, d′, s), it must occur with strictly positive probability

(at state s) that firm d′ is both first-best and second-best across observations.

Lastly, although job mobility plays a limited role, we emphasize that we rely on a worker’s job

retention for at least three periods—a common pattern in standard datasets—to identify the infor-

mation technology, which in turn is key to pinning down all the other primitives, including the law

of motion of the state, the CCPs, the deterministic wage component, the distribution of productivity

shocks, the output (and human-capital) technology, and the compensating differential.

4.8 Estimation

In this section, we describe the procedure used to estimate the wage-equation parameters in our

empirical application. The procedure mirrors the structure of the identification arguments (a mix-

ture step followed by a quantile step), while introducing some parametric assumptions and other

simplifications to preserve tractability.

In a preliminary step, we estimate the learning process by constructing performance measures

from existing earnings data available in the LEHD dataset. While this data does not provide direct
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performance information, we can infer it from changes in observed earnings. Specifically, we focus

on individual-firm pairs with at least five quarters of employment. For any given quarter t, we first

calculate the average quarterly labor earnings from the preceding three quarters (quarters t − 3 to

t − 1). We then define an observation of high performance pay as the dollar value of earnings in

quarter t if those earnings are more than 50% higher than this calculated lagged average earnings.

Our identification procedure is more general and robust, as it does not rely on the availability of these

performance measures, whose construction typically involves additional assumptions.

Furthermore, we treat each worker’s second-best firm,D′
n,t, as known in every period. In particu-

lar, in the empirical application, we constructD′
n,t by considering the worker’s labor markets defined

by industry and geographical location for classes of observationally equivalent workers (defined by

gender and education).

Our observables therefore consist of

(wn,t, Dn,t, D
′
n,t, Hn,1, κn,t, Pn,t).

Next, we assume that, for each second-best firm D′
n,t = d′ ∈ D and efficiency type en = e, the

productivity shock ϵn,t(d′, e) is normally distributed conditional on (Dn,t, D
′
n,t, Hn,1, κn,t, Pn,t, en),

with mean and variance allowed to depend flexibly on (Dn,t, D
′
n,t, Hn,1, κn,t, Pn,t, en) to account for

the potential selection ofDn,t andD′
n,t based on ϵn,t. Therefore, the conditional cross-sectional wage

distribution at time t is a finite mixture of Normal distributions:

Pr(wn,t ≤ w | Dn,t = d,D′
n,t = d′, Hn,1 = h, κn,t = κ, Pn,t = p)

=
∑
e∈E

Pr(en = e | Dn,t = d,D′
n,t = d′, Hn,1 = h, κn,t = κ, Pn,t = p)

× Pr(wn,t ≤ w | Dn,t = d,D′
n,t = d′, Hn,1 = h, κn,t = κ, Pn,t = p, en = e),

where each mixture component is normally distributed:

wn,t | Dn,t = d, D′
n,t = d′, Hn,1 = h, κn,t = κ,

Pn,t = p, en = e ∼ N
(
φ(d, d′, h, κ, p, e) + µ(d, d′, h, κ, p, e),

σ2(d, d′, h, κ, p, e)
)
.

with µ(d, d′, h, κ, p, e) and σ2(d, d′, h, κ, p, e) denoting the unknown conditional mean and variance

of ϵn,t(d′, e), respectively.

For each mixture component, we parameterized the deterministic wage, φ(d, d′, h, κ, p, e) :=
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y(d′, h, κ, p, e) + Ψ(d, d′, h, κ, p, e), with the finite-dimensional vector of parameters βe(e, d, d′) :=

(βy(e, d, d
′), βΨ(e, d, d

′)). In particular, for y(·; βy(e, d, d′)), we assume a specification that depends

linearly on worker experience and the beliefs Pn,t (see equation 23). For Ψ(·; βψ(e, d, d′)), we assume

a flexible quartic polynomial on workers’ experience, κ, and beliefs, p, interacted with initial human

capital, h.

For each latent class en = e ∈ E , we estimate βe(e, d, d′) using the extremal quantile regres-

sion approach of D’Haultfoeuille et al. (2018), implemented in the eqregsel Stata command

(D’Haultfoeuille et al., 2020). This procedure estimates selection-corrected linear quantile regres-

sion coefficients at extreme quantiles by exploiting the behavior of the conditional wage distribu-

tion in the upper tail, in the spirit of our identification arguments. Under the regularity conditions

in D’Haultfoeuille et al. (2018), the resulting estimator is consistent and asymptotically normal,

and we compute standard errors using the bootstrap procedure provided by eqregsel. This in-

ner extremal quantile regression is nested inside an outer maximum-likelihood step, where we fit

a finite mixture of Normal distributions with |E| components and estimate the mixture weights

Pr(en = e | Dn,t = d,D′
n,t = d′, Hn,1 = h, κn,t = κ, Pn,t = p), for example using the fmm

routine in Stata.

5 The Impact of Sorting on Earnings Inequality

Here, we use our class of models and econometric approach to empirically measure how sorting be-

tween workers and firms affects earnings inequality in the U.S. The most commonly used framework

to address this question is that of AKM, which decomposes wages into worker and firm fixed effects,

observable covariates, and random shocks. From these estimates, the wage variance is partitioned

into the contribution of worker effects, firm effects, their covariance, and a residual. The impact of

sorting on earnings inequality is then gauged by the fraction of the total wage variance attributable

to the covariance between worker and firm effects. Empirical applications of this framework often

point to a negligible role for sorting due to the weak correlation between worker and firm effects.

Building on the theoretical insights from the class of models we study, we argue that the AKM

estimates of the correlation between firm and worker effects may be understated because two key

forces are omitted. First, the compensating differential can dampen the direct impact of worker

and firm characteristics on wages, because it compensates a worker for the forgone future wage

returns from the human capital and information that could have been acquired by accepting compet-

ing firms’ offers. Second, endogenous matching frictions, namely a worker’s acquisition of human
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capital and the gradual resolution of uncertainty about ability, may prevent high-type workers from

immediately joining the most productive firms. For instance, workers might persistently choose less-

productive firms that offer valuable training or learning opportunities, which challenges the common

presumption that workers always sort into the most productive match given their observed and fixed

unobserved productive characteristics. To empirically validate these conjectures, we provide both

simulation-based evidence and empirical evidence about them.

5.1 An Illustrative Simulation Exercise

In our first application, we simulate an economy based on a data-generating process (DGP) that

captures the main features of our class of models, while introducing a few simplifications to fa-

cilitate direct comparison with the AKM framework. Specifically, we remove the wage equation’s

dependence on the second-best firm (thus eliminating the need to impose Assumption 2) and assume

away selection on ϵn,t, since neither is present in AKM. Under these simplifications, workers’ wages

follow equation (8), are parameterized as:

wn,t =
∑
d∈D

∑
e∈E

1{Dn,t = d, en=e} ×
[
e+ β0(d) + β1(d, e)Hn,1 + β2(d, e)κn,t + β3(d, e)Pn,t

+Ψ
(
Hn,1, κn,t, Pn,t; ψ(d, e)

)
+ ϵn,t(d, e)

]
,

(21)

where the output technology y(·) consists of an AKM-style sum of worker and firm effects, e +

β0(d), plus first-order terms in Hn,1, κn,t, and Pn,t governed by the parameters β1(d, e), β2(d, e),

and β3(d, e). The compensating differential Ψ(·) is approximated by a truncated Taylor expansion,

which includes higher-order and interaction (cross) terms in Hn,1, κn,t, and Pn,t, governed by the

parameters ψ(d, e). Hn,1 consists of gender and education, while κn,t incorporates age.

We calibrate the wage parameters and other simulation features to match key earnings moments

from PSID, a representative survey of U.S. households with panel information from 1968 to 2022.

These moments include wage growth, earnings life-cycle patterns (both first and higher-order), and

cross-sectional earnings inequality. We also include as targets the AKM-type moments from Song

et al. (2019), which derive from SSA. This calibration ensures that our simulated economy reflects

both the broader U.S. earnings distribution and the key features highlighted by the AKM framework;

see Appendix E for details. As mentioned, the literature centered on the AKM framework measures

the impact of sorting on earnings inequality based on firm and worker (linear) complementarities in

the output technology y(·). Correspondingly, this literature focuses on the fraction of the total wage

variance attributable to the covariance between worker and firm effects or, by the notation of the
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Figure 1: Comparison of True Values vs. AKM Estimates of ρ
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wage equation in (21), ρ := Cov(en, β0(Dn,t))/Var(wn,t).

Assuming that the econometrician has access to a short panel of data on wn,t, Hn,1, κn,t, and

Pn,t from the simulated economy—for simplicity, we assume that beliefs about workers’ ability are

observed—the AKM estimate of ρ, denoted by ρ̂AKM, is obtained by estimating the wage equation

wn,t =
∑
d∈D

∑
e∈E

1{Dn,t = d, en = e}
[
e+ β0(d) + β1Hn,1 + β2 κn,t + β3 Pn,t + ϵn,t(d, e)

]
, (22)

where the compensating differential Ψ(·) is omitted and the parameters β1, β2, and β3 are assumed

to be invariant across (d, e). Our findings suggest that when Ψ(·) is negative—implying that work-

ers match with firms offering human capital and information gains with future returns higher than

competitors—ρ̂AKM underestimates ρ because the omitted Ψ(·) attenuates the firm and worker com-

plementarities in output technology y(·). Conversely, when Ψ(·) is positive—so that workers match

with firms offering human capital and information gains with future returns lower than competitors—

ρ̂AKM overestimates ρ because the omitted Ψ(·) enhances the firm and worker complementarities in

output technology y(·). Figure 1 illustrates these patterns. On the horizontal axis, we plot the in-

creasing values of ρ used to generate our data, while on the vertical axis we report the corresponding

AKM estimates. The blue line corresponds to the case Ψ(·) = 0 in the true DGP—though it does

not perfectly coincide with the 45-degree line because, even though Ψ(·) = 0 in the true DGP, the

parameters β1(d, e), β2(d, e), and β3(d, e) still vary across (d, e), whereas AKM incorrectly treats

them as invariant across (d, e). The red line shows results when workers Ψ(·) > 0 (leading to an

upward bias), and the yellow line shows results when Ψ(·) < 0 (leading to a downward bias).21

21We adjust standard AKM estimates for low-mobility bias, following the methodology of Bonhomme et al. (2023).
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5.2 Monte Carlo Simulation

The previous results ignored two key features of our model, both of which we now bring back. In

particular, we next simulate the economy of our model, with only a few simplifications that allow for

a simpler solution of the model. Specifically, we assume that the economy comprises only two firm

types (d), whereas workers can be of many types (e). Production takes a linear form that depends on

a type-dependent intercept and on the beliefs about a worker’s ability, Pn,t. We further assume that

within the firm, there are two possible jobs, denoted by k ∈ {H,L}, with high and low skill require-

ments, but that entail identical opportunities for information and human capital acquisition, and that

workers have a comparative advantage depending on their own observable skills—namely, high-skill

workers produce more, on average, than low-skilled workers in the high-skilled job whereas low-skill

workers produce more, on average, than high-skilled workers in the low-skilled job.

Simulation. As in our previous exercise, we simulate data from our model parameterized so that it

matches standard cross-sectional moments of the earnings distribution in the U.S., for instance, life-

cycle profiles of average and standard deviation of (log) earnings, standard deviation, skewness, and

kurtosis of earnings growth, and measures of top-earnings concentration. In simulating the model,

we solve it by backward induction. That is, starting from a given final period T , we assume that the

continuation value for every worker is equal to zero after period T . Exploiting the efficiency of our

equilibrium, we determine optimal equilibrium allocations by solving for the planner’s problem of

choosing for a worker, given each beginning-of-period state, the optimal firm and job. We then use

equation (7) to determine a worker’ wage at each time and state. Conveniently, since there are only

two types of firms in this economy, we can easily identify the second-best firm for each worker.

Given the solution of the planner’s problem and the equilibrium wage in period T , we can proceed

one period backward and solve the problem in period T − 1 fully knowing the continuation match

surplus value function for each worker. In any such period, a worker’s assignment to a particular

firm and job depends on the present value of the worker’s output, but wages now also contain the

compensating differential term, which we calculate given the worker’s match surplus continuation

value with the current first- and second-best firm from next period on. We proceed in this fashion for

30 periods, so our model captures most of the standard working life cycle.

In our simulation, worker’s output is denoted by Y (sn,t, ϵL,n,t, ϵH,n,t) with sn,t = (H1,t, κn,t, Pn,t, e),

that is, output depends on Hn,t, that captures the initial human capital of an individual (e.g. educa-

tion), κn,t represents experience, and Pn,t captures the beliefs of the worker’s type. Output is also

affected by (ϵL,n,t, ϵH,n,t) which are idiosyncratic job-specific productivity shocks for low and high
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skill job types. Then, for a worker type e, the planner’s problem is

Y (sn,t, ϵL,n,t, ϵH,n,t) = max
d∈De

{ỹ (d, sn,t) + δ(1− η(κn,t, d))E [Y (sn,t+1, ϵL,n,t+1, ϵH,n,t+1|sn,t, d)]}

ỹ (d, sn,t) = max {yL (d, sn,t) + ϵL,n,t, yH (d, sn,t) + ϵH,n,t}

y (d, sn,t) =

yL (d, sn,t) if yL (d, sn,t) + ϵL,n,t ≥ yH (d, sn,t) + ϵH,n,t

yH (d, sn,t) otherwise,

where

Pn,t+1 =


αh,d,ePn,t

αh,d,ePn,t+βh,d,e(1−Pn,t)
if an,t (d, e) ≤ a (θ)

(1−αh,d,e)Pn,t

(1−αh,d,e)Pn,t+(1−βh,d,e)(1−Pn,t)
otherwise

,

yL(d, sn,t) = ζ0L(d, ·) + ζ1L(d, ·)Pn,t and yH(d, sn,t) = ζ0H(d, ·) + ζ1H(d, ·)Pn,t, (23)

with ζ0L(d, ·) = ζ0L(d,Hn,t, κn,t, e) > ζ0H(d, ·) = ζ0H(d,Hn,t, κn,t, e) and ζ1L(d, ·) = ζ1L(d,Hn,t,-

κn,t, e) ≤ ζ1H(d, ·) = ζ1H(d,Hn,t, κn,t, e) to capture the idea that low-ability workers have a com-

parative advantage at the low-skill job whereas high-ability workers have a comparative advantage

at the high-skill job. We can then express wages and compensating differential as

wn,t (d, d
′, e)=

yL (d′, sn,t) + ϵL,n,t +Ψ(d, d′, sn,t) if yL (d′, sn,t) + ϵ′L,n,t ≥ yH (d′, sn,t) + ϵ′H,n,t

yH (d′, sn,t) + ϵH,n,t +Ψ(d, d′, sn,t) otherwise
,

where Ψ(d, d′, sn,t) is the difference between δ[1− η (κn,t, d
′)]E [Y (sn,t+1, ϵL,n,t+1, ϵH,n,t+1|sn,t, d′)]

and δ [1− η (κn,t, d)]E [Y (sn,t+1, ϵL,n,t+1, ϵH,n,t+1|sn,t, d)].

Estimation. The goal of our Monte Carlo exercise is to show that, despite its complexity, our model

can be easily estimated using relatively standard empirical methods that combine quantile regression

and mixture model estimation. We start by simulating an economy comprised of two firm types

and a large number of workers characterized by their unobserved type, their skill, and initial human

capital, h. We also assume that workers and firms share initial beliefs about worker types, p, which

are updated following Bayes’ rule using output realization, y(d, sn,t), as a noisy signal of workers’

true ability. Our entire panel is consistent on 1 million workers simulated between ages 25 and 55

(30 periods).

Next, we aim to recover the key parameters of the production function (the ζ ′s). For numerical

expediency, we approximate the compensating differential through a flexible-enough polynomial

that well captures the shape of the compensating differential. In particular, we estimate the mixture
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model over the distribution of (unobserved) worker types e, where wages are assumed to follow

wn,t(d, d
′, k) = β0 (d

′, k)+β1 (d
′, k) IH + β3 (d

′, k)κn,t︸ ︷︷ ︸
ζ0k(d′,·)

+β4 (d
′, k)︸ ︷︷ ︸

ζ1k(d′,·)

Pn,t+Ψ(d, d′, sn,t)+ϵn,t, (24)

for a given worker type in a given firm type d and job type k ∈ {L,H}, which are treated as

observables. Here, the IH is a dummy that captures the initial human capital of the individual—

for instance, educational attainment. The first two components aim to capture the worker’s output,

whereas the third term is the compensating differential, Ψ(d, d′, sn,t). We approximate Ψ via a flex-

ible polynomial form on initial human capital, experience, and beliefs—which turns out to provide

a very accurate approximation to the true compensating differential. Notice that if there was no

selection in our model, we could estimate this mixture model via maximum likelihood to obtain esti-

mates of the distribution of the underlying worker type, allowing for a flexible polynomial to capture

Ψ(d, d′, sn,t)—for instance, estimated using the mfp command in Stata. In our model, however, the

presence of selection on observables and unobservables precludes using OLS for such estimation. To

address this, we apply the extremal quantile selection procedure proposed by D’Haultfoeuille et al.

(2018) to estimate semiparametric selection models. We modify their procedure in two ways. First,

we incorporate a polynomial fitting step for Ψ within the quantile regression step, which we use to

estimate (24). Second, we impose an alternative normalization to be able to recover the full intercept

of expected output (β0(d′, k)), in the wage equation, by normalizing instead the relevant quantile of

the (productivity) shock in the wage equation.

Figure 2 shows the results for our calibrated economy. The top left panel shows the distribution

of wages, wn,t(d, d′, k) generated by our model, which resembles the distribution of labor earnings

in the U.S..The top bottom right of Figure 2 shows the distribution of the compensating differen-

tial, Ψ(d, d′, sn,t), which is typically negative, indicating that for a large number of workers in our

simulated economy, the compensating differential reduces wages relative to output as they trade hu-

man capital accumulation and learning opportunities for higher current wages. Our simulation also

matches an increase in average labor income of about 60% for workers between 25 and 55 years old,

as observed in U.S. PSID data (bottom-left panel). The bottom right panel shows the standard devi-

ation of labor earnings, which increases by 11 percentage points, which is about 2/3 of the increase

observed in PSID over the same period.

Given the simulated economy, the next step is to validate our estimation procedure by estimat-

ing the key parameters of 24 to retrieve the coefficients underlying our simulation. The results of
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Figure 2: Wages Distribution and Compensating Differential in Simulation

Note: Distribution of worker wages (top left), compensating differential (top right), mean of labor earnings over the life cycle (bottom left), and

standard deviation of labor earnings over the life cycle (bottom right). Results based on a simulation of 10 million workers for 44 periods. Top left

panel shows annual labor earnings data from PSID for workers between 22 and 65 who are employed head of households. Bars show the share of

labor earnings accounted for by different percentiles of the labor earnings distribution.

this exercise are shown in Table 1, which reports the estimates for our simulation with two worker

types and two firm types at a few selected quantiles of the income distribution. Here, we focus our

discussion on workers with the lowest level of ability (lowest value of Hn,t); a similar one applies to

the other type. Our key result is that our estimation recovers the key parameters of the production

function—the linear component shown in column Value—and the fit improves as we move to lower

ranks of the wage distribution, which is consistent with the intuition of D’Haultfoeuille et al. (2018):

lower quantiles better capture the selection of the job at the first- best vs. the second-best firm. In

fact, our procedure is the most accurate when we focus on the bottom 0.1% of the wage distribution,

which is close to the optimal quantile obtained using D’Haultfoeuille et al. (2018).
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Table 1: Comparison of Parameters and Model Estimates

Coefficient Value OLS Quantile Regressions at
0.1% 0.5% 1% 5% 10%

Worker Type 1
β0 0.49 0.53 0.49 0.49 0.49 0.49 0.49

βHn,t
0.17 0.19 0.15 0.16 0.16 0.17 0.18

βκn,t
12.30 10.02 12.31 12.31 12.31 12.29 11.89

βPn,t
0.11 3.29 0.12 0.08 0.07 0.06 0.35

Worker Type 2
β0 0.21 0.25 0.21 0.20 0.21 0.21 0.21

βHn,t
0.20 0.14 0.10 0.10 0.10 0.10 0.11

βκn,t 9.61 6.15 9.56 9.40 9.45 9.15 8.76
βPn,t 0.14 3.18 0.14 0.25 0.23 0.49 0.85

Note: results from model simulation. Column "Value" indicates the calibrated values of the production function. The rest of the columns are
the estimated values of these parameters from a mixture estimation. The underlying model is a fractional polynomial estimation that includes a
linear term forHn,t, κn,t and Pn,t and a flexible polynomial of these variables to capture the compensating differential, Ψn,t. The estimation
is done using a quantile regression at different quantiles of the wage distribution.

5.3 Empirical Application

Having validated our estimation procedure, we now move to estimate the wage equation (21) using

U.S. employer-employee match data, namely LEHD data. This rich dataset provides quarterly labor

earnings for all workers across 21 states—including California, Florida, and Pennsylvania—from

the mid-1990s to 2022. We directly observe each worker’s current firm, wage, gender, education,

and age. Performance measures—in the model’s notation, signal an,t—are not directly observed, and

we built a procedure to infer them from workers’ variable pay. The idea is that the quantiles of the

variable pay distribution identify performance measures to the extent that variable pay is monotonic

in performance. Based on these extracted performance measures, we are able to estimate Pn,t for

each worker n and period t and so treat Pn,t as a “covariate” in the subsequent wage estimation step.

Note that this construction of Pn,t is not necessary for our more general identification framework,

where we show how to identify the distribution of Pn,t from the wage mixture. Additional details on

the procedure used to construct Pn,t are provided in Appendix F.

To estimate the wage equation (21), we assume that ϵn,t(d, e) is normally distributed conditional

on en = e. Consequently, if there was no selection on ϵn,t, the distribution of wn,t conditional on

(Dn,t, Hn,1, κn,t, Pn,t) would be a finite (because E is finite) mixture of Normal distributions. In that

case, we could simply use the Stata command fmm to estimate the wage parameters, since it com-

bines the estimation of Normal mixtures with OLS. As in our simulation exercise, if there were no

worker efficiency types en, we could rely on the Stata package eqregsel to run extremal quantile

regressions that account for selection on ϵn,t (D’Haultfoeuille et al., 2018, 2020). To accommo-

date both aspects simultaneously, we follow our estimation results and use our implementation of

58



eqregsel developed by D’Haultfoeuille and Maurel (2013) to allow for mixture estimation and

polynomial approximation of the compensating differential.

Our empirical results (currently awaiting approval from the Census Bureau before disclosure)

corroborate the findings from our simulations. In particular,the AKM estimates of ρ based on the

wage equation (22) fall below our own estimates of this parameter. This is because the estimated Ψ(·)

is, on average, negative, suggesting that workers tend to match primarily with firms offering human

capital and informational gains associated with high future wage returns. This finding indicates that

our model provides a potential avenue for the resolution of the puzzle of low sorting.

We support this key finding with an exercise designed to capture global sorting in our rich class

of models. By construction, ρ measures sorting exclusively with respect to the worker time-invariant

efficiency type en. However, in our setting, workers may also sort on their beliefs about ability θn

and on accumulated human capital (endogenous matching frictions). To capture these additional

sorting dimensions, we perform a random reallocation exercise, comparing the observed earnings

distribution to a counterfactual scenario in which workers and firms are matched at random. If

sorting indeed has a substantial impact, then disrupting these links should markedly reduce both

earnings dispersion and the concentration of high earnings, since workers would no longer cluster

in the firms offering the greatest productivity or the most valuable human capital and informational

benefits. Our preliminary evidence supports all of these mechanisms.

6 Conclusion

In this paper, we examine the empirical content of a large class of dynamic matching models of

the labor market with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning

about workers’ ability, and firm monopsony power. We allow workers’ ability and human capital,

acquired before and after entry in the labor market, to be general across firms and jobs to varying

degrees. Such a class nests and extends known models that have been used to study worker turnover

across firms, occupational choice, wage differentials across jobs, firms, and occupations, and wage

inequality across workers and over the life cycle.

We provide a novel argument to establish that these models are identified under intuitive con-

ditions, solely from data on job choices and wages. In particular, we do not rely on any additional

information that could facilitate the identification of the learning process, such as proxies for be-

liefs or direct measures of signals about ability. Moreover, we do not impose any restrictions on

endogenous variables or on the dynamics of states, choices, and outcomes. Instead, our argument
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rests on conditions that allow for arbitrary patterns of selection based on endogenously time-varying

unobservables, are easy to verify, impose minimal data requirements, and yield a simple constructive

estimator of the primitives of interest, as shown in our empirical application.

Using this framework, we revisit an outstanding puzzle regarding the role of labor market sorting

for wage inequality. We demonstrate that ignoring the dynamics of the matching process between

firms and workers due to human capital acquisition and learning about ability—and the resulting

compensating differentials in wages when firms differ in the human capital and information opportu-

nities they offer—can lead to a systematically underestimating the importance of sorting for wages.
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A Extensions of Identification Argument

We discuss here extensions of our identification framework.

Support E of Efficiency en. To identify the wage mixture (19), Assumption 3(ii) imposes that E is

finite. If en is continuous (and potentially multidimensional), then the wage mixture (19) becomes

a continuous mixture of potentially continuous Gaussian mixtures, making identification more chal-

lenging. This impasse can be easily resolved by assuming away selection of Dn,t based on ϵn,t. In

that case, Assumption 3(i) can be replaced by requiring that the unconditional distribution of ϵn,t is

Normal. Since Dn,t is now independent of ϵn,t, the distribution of ϵn,t conditional on Dn,t equals

its unconditional distribution and is therefore also Normal. Under this simplification, the wage mix-

ture (19) is a continuous mixture of Normals, whose identification is established by Bruni and Koch

(1985)’s Theorem 1.

Support A of Signal an,t. As for E , Proposition 4 can also be adapted to cases where an,t is con-

tinuous (and potentially multidimensional), provided that there is no selection of Dn,t based on ϵn,t.

To identify the learning process in Proposition 5, Assumption 4(i) imposes that A has a cardinality

of two. As explained in Section 4.4, this restriction enables us to represent the signal distribution

as a binomial mixture over the unobserved ability θn, which is identified based on Blischke (1964,

1978). This assumption can be extended to include other cardinalities and potentially continuous

and multidimensional an,t, provided that the signal distribution remains an identifiable mixture. For

instance, if an,t is distributed as a continuous and multivariate Gaussian mixture conditional on θn,

then the signal distribution would then be a finite mixture of continuous and multivariate Gaussian

mixtures (finite because Θ is finite), which remains identifiable according to Bruni and Koch (1985),

as discussed in their Section 4.9.

Support Θ of Ability θn,t. To identify the learning process in Proposition 5, Assumption 4(i) re-

quires that Θ has cardinality two. This restriction allows us to model the signal distribution as a

binomial mixture over the unobserved ability θn with two components. The binomial aspect arises

because A has cardinality two, and the two components of this binomial mixture correspond to the

cardinality of Θ. This mixture is identifiable, as shown by Blischke (1964) and Blischke (1978), pro-

vided that the number of periods where workers are observed at each given job d is at least 2r−1 = 3,

where r = |Θ| = 2 represents the number of mixture components (see Appendix D for more details).

Keeping A of cardinality two, Assumption 6(i) can be extended to any finite Θ, requiring an increase

in the number of observation periods to meet the new lower bound 2r − 1. Going beyond the finite

1



case, if both θn and an are continuous and multidimensional, and an,t follows a multivariate Normal

distribution conditional on θn, then the signal distribution is a continuous mixture of multivariate

Normals, identified by Bruni and Koch (1985)’s Theorem 1.

B Additional Results

B.1 Micro-Fundation of Assumption (iii) of Proposition 3

Lemma 1 shows that if the productivity shocks are “sufficiently independent,” then Assumption (iii)

of Proposition 3 holds.

Lemma 1 (Moderate Dependence). Let Assumptions (i)–(ii) of Proposition 3 hold. For some q1 ∈

(0, 1], let

lim
u→+∞

Pr
(
ϵn(0) ≤ ϵn(1) + a

∣∣ ϵn(1) ≥ u
)
= q1 for all a ∈ R. (25)

Then, Assumption (iii) of Proposition 3 holds:

lim
w→+∞

Pr
(
Dn = 1 | Xn = x, wn(1) ≥ w

)
= q1 for every x.

Moreover, if ϵn(0) and ϵn(1) are independent, then q1 = 1.

Proof. Fix a realisation x of Xn and w ∈ R. In the static Roy model,

Pr(Dn = 1 | Xn = x, wn(1) ≥ w) = Pr
(
y(1, x) + ϵn(1) ≥ y(0, x) + ϵn(0)

∣∣Xn = x, y(1, x) + ϵn(1) ≥ w
)

= Pr
(
ϵn(0) ≤ ϵn(1) + y(1, x)− y(0, x)

∣∣ ϵn(1) ≥ w − y(1, x)
)
,

(26)

where the last equality uses Assumption (i) of Proposition 3.22

Set u := w − y(1, x), so w → +∞ iff u→ +∞. Applying (25) with a = y(1, x)− y(0, x) gives

lim
w→+∞

Pr
(
ϵn(0) ≤ ϵn(1) + a(x)

∣∣ ϵn(1) ≥ w − y(1, x)
)
= q1. (28)

22In our dynamic generalised equilibrium Roy model, we can likewise obtain an equation analogous to (26). In fact,
under Assumption 2(i), the equilibrium is efficient. In an efficient equilibrium, job choices maximise the expected present
discounted value of output. Therefore, for any (d, d′, e, s) ∈ D2 × E × St(d, d

′, e) and w ∈ R,

Pr
(
Dn,t = d

∣∣ sn,t(e) = s, wn,t(d, d
′, e) ≤ w

)
= Pr

(
Y (d, s) + ϵn,t(d, e) ≥ Y (d′, s) + ϵn,t(d

′, e)
∣∣ sn,t(e) = s, φ(d, d′, s) + ϵn,t(d

′, e) ≤ w
)

= Pr
(
ϵn,t(d, e) ≥ ϵn,t(d

′, e) + Y (d′, s)− Y (d, s)
∣∣ ϵn,t(d′, e) ≤ w − φ(d, d′, s)

)
,

(27)

where Y (d, s)+ϵn,t(d, e) is the expected present discounted value of output for firm d in state s after productivity shocks
have realised; the last equality uses Assumption 5.
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By (26), (28) is precisely

lim
w→+∞

Pr(Dn = 1 | Xn = x, wn(1) ≥ w) = q1,

which is Assumption (iii) of Proposition 3.

Now, suppose ϵn(1) and ϵn(0) are independent. Then, for any a ∈ R and u ∈ R,

Pr(ϵn(0) ≤ ϵn(1) + a | ϵn(1) ≥ u) = E
[
Pr(ϵn(0) ≤ ϵn(1) + a | ϵn(1))

∣∣∣ ϵn(1) ≥ u
]

= E
[
Fϵn(0)

(
ϵn(1) + a

) ∣∣∣ ϵn(1) ≥ u
]
,

(29)

where the second line uses independence of ϵn(0) and ϵn(1). Since Fϵn(0) is nondecreasing,

Fϵn(0)(u+ a) ≤ Fϵn(0)
(
ϵn(1) + a

)
≤ 1 on the event {ϵn(1) ≥ u}.

Taking conditional expectations yields the bounds

Fϵn(0)(u+ a) ≤ E
[
Fϵn(0)

(
ϵn(1) + a

) ∣∣∣ ϵn(1) ≥ u
]

≤ 1.

Letting u→ +∞ and using limτ→+∞ Fϵn(0)(τ) = 1, we conclude that

lim
u→+∞

Pr(ϵn(0) ≤ ϵn(1) + a | ϵn(1) ≥ u) = 1,

so q1 = 1.

Remark. Suppose that ϵn(1) and ϵn(0) are jointly normal—or lognormal. If cov(ϵn(1), ϵn(0)) <

Var(ϵn(1))—or if cov(log(ϵn(1)), log(ϵn(0))) < Var(log(ϵn(1)))—then (25) holds with q1 = 1. Sim-

ilar “sufficient independence” conditions can be given for many other parametric families, including

both thin-tailed (for instance, Normal, Exponential, Gamma, Logistic, Gumbel) and fat-tailed (for

instance, Pareto, Cauchy, Burr, Fréchet, log-logistic, and lognormal) distributions.

B.2 Proposition 3 with Bounded Support

Proposition 12 establishes identification of the deterministic wage components in the case where the

potential wages wn(1) | Xn = x and the observed, selected wages wn | (Dn = 1, Xn = x) have

different right endpoints. The identification result retains the spirit of Proposition 3, but extra care is

needed in taking limits because the two endpoints differ. We further show that, when finite, the right

and left endpoints of the potential wages wn(1) | Xn = x are identified (Corollary 6).

Proposition 12 (Deterministic Wage Component with Bounded Supports). Assume:
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(i) (Exogeneity.) ϵn(1) is independent of Xn.

(ii) (Supports.) For each realisation x of Xn,

ω(x) := sup{u : Pr(wn(1) ≤ u | Xn = x) < 1} ≤ +∞,

ωobs(x) := sup{u : Pr(wn ≤ u | Dn = 1, Xn = x) < 1} < ω(x),

0 < Pr(Dn = 1 | Xn = x) ≤ 1,

with ω(x) and ωobs(x) potentially unknown.

(iii) (Relative Tail Decay.) For each realisation x of Xn, define

rx(u) := Pr
(
Dn = 1 | Xn = x, wn(1) > Qwn(1)|Xn=x(u)

)
, u ∈ (0, 1).

There exists an (unknown) constant q1 ∈ (0,+∞) such that, for every x and a fixed reference

x̄,

lim
u→1

rx(u)

rx̄(u)
= q1.

(iv) (Tail Regularity.) For each realisation x of Xn, there exist (unknown) thresholds wx < +∞

and wobs
x < ωobs(x) such that Fwn(1)|Xn=x and Fwn|Dn=1,Xn=x are continuous and strictly

increasing on (wx,+∞) and (wobs
x , ωobs(x)), respectively. Moreover, Fwn|Dn=1,Xn=x is contin-

uous at the endpoint:

lim
w→ωobs(x)

Fwn|Dn=1,Xn=x(w) = 1.

(v) (Normalization.) There exists a known realisation x̄ of Xn with y(1, x̄) = 0.

For each realisation x of Xn, let {τ (k)x̄ }k≥1 ⊂ (0, 1) be any sequence with τ (k)x̄ → 1 as k → +∞.

Define

1− τ (k)x =
Pr(Dn = 1 | Xn = x̄)

Pr(Dn = 1 | Xn = x)

(
1− τ

(k)
x̄

)
. (30)

Then,

lim
k→+∞

[
Qwn |Dn=1,Xn=x

(
τ (k)x

)
− Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

) ]
= y(1, x). (31)

Hence, y(1, x) is identified (up to the normalization at x̄).

Proof. To facilitate reading, we divide the proof into steps and box the key equations in each step.

Step 1 (Bayes rule). Fix a realisation x of Xn. For any real w, Bayes’ rule gives

4



Swn|Dn=1,Xn=x(w) =
Pr
(
wn(1) > w | Xn = x

)
Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
Pr(Dn = 1 | Xn = x)

= Swn(1)|Xn=x(w)
Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
Pr(Dn = 1 | Xn = x)

.

(32)

Define

rx(u) := Pr
(
Dn = 1 | Xn = x, wn(1) > Qwn(1)|Xn=x(u)

)
, u ∈ (0, 1).

Evaluating (32) at w = Qwn(1)|Xn=x(u) yields

Swn|Dn=1,Xn=x

(
Qwn(1)|Xn=x(u)

)
= (1− u)

rx(u)

Pr(Dn = 1 | Xn = x)
, u ∈ (0, 1). (33)

Step 2 (Behaviour of the composed survival near the observed endpoint). By Assumption (iv), there

exist thresholds wx < ω(x) and wobs
x < ωobs(x) such that Fwn(1)|Xn=x is continuous and strictly

increasing on (wx, ω(x)), and Fwn|Dn=1,Xn=x is continuous and strictly increasing on (wobs
x , ωobs(x)).

Define

u∗x := Fwn(1)|Xn=x(wx), τ ∗x := Fwn|Dn=1,Xn=x(w
obs
x ),

so Qwn(1)|Xn=x : (u∗x, 1) → (wx, ω(x)) and Qwn|Dn=1,Xn=x : (τ ∗x , 1) → (wobs
x , ωobs(x)) are strictly

increasing. Because ωobs(x) < ω(x), set

ūx := sup
{
u ∈ (u∗x, 1) : Qwn(1)|Xn=x(u) < ωobs(x)

}
∈ (u∗x, 1).

Then, Qwn(1)|Xn=x(u) → ωobs(x) as u → ūx. Since Qwn(1)|Xn=x(u) is increasing and ωobs(x) is

finite, there exists ũx ∈ (u∗x, ūx) such that Qwn(1)|Xn=x(u) ∈ (wobs
x , ωobs(x)) for all u ∈ (ũx, ūx). On

that interval the map

u 7−→ Swn|Dn=1,Xn=x

(
Qwn(1)|Xn=x(u)

)
is a composition of a continuous, strictly increasing function (the potential quantile) with a continu-

ous, strictly decreasing function (the observed survival on its tail), hence it is continuous and strictly

decreasing on (ũx, ūx). By the endpoint continuity in Assumption (iv),

lim
w→ωobs(x)

Fwn|Dn=1,Xn=x(w) = 1,

and therefore

lim
u→ūx

Swn|Dn=1,Xn=x

(
Qwn(1)|Xn=x(u)

)
= 0. (34)
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Step 3 (Exact tail matching). By the continuity and strict decrease of u 7→ Swn|Dn=1,Xn=x(Qwn(1)|Xn=x(u))

on (ũx, ūx) and its limit 0 as u→ ūx, there exists τ̃x ∈ (τ ∗x , 1) such that for every τ ∈ (τ̃x, 1) there is

a unique ux(τ) ∈ (ũx, ūx) solving

Swn|Dn=1,Xn=x

(
Qwn(1)|Xn=x(ux(τ))

)
= 1− τ.

Combining this with Swn|Dn=1,Xn=x(Qwn|Dn=1,Xn=x(τ)) = 1 − τ for all τ ∈ (τ ∗x , 1) and the strict

decrease of w 7→ Swn|Dn=1,Xn=x(w) on (wobs
x , ωobs(x)) yields

Qwn|Dn=1,Xn=x(τ) = Qwn(1)|Xn=x(ux(τ)) for all τ ∈ (τ̃x, 1). (35)

Moreover,

lim
τ→1

ux(τ) = ūx. (36)

Step 4 (Cross-x τ -alignment and the product identity). Fix any sequence {τ (k)x̄ }k≥1 ⊂ (0, 1) with

τ
(k)
x̄ → 1. For each x, define

1− τ (k)x =
Pr(Dn = 1 | Xn = x̄)

Pr(Dn = 1 | Xn = x)

(
1− τ

(k)
x̄

)
. (37)

Let u(k)x := ux(τ
(k)
x ) and u(k)x̄ := ux̄(τ

(k)
x̄ ). Using (33) at u = u

(k)
x and u = u

(k)
x̄ ,

1− τ (k)x = (1− u(k)x )
rx(u

(k)
x )

Pr(Dn = 1 | Xn = x)
, 1− τ

(k)
x̄ = (1− u

(k)
x̄ )

rx̄(u
(k)
x̄ )

Pr(Dn = 1 | Xn = x̄)
.

Divide the two equalities and use (37) to obtain

(1− u
(k)
x ) rx(u

(k)
x )

(1− u
(k)
x̄ ) rx̄(u

(k)
x̄ )

= 1. (38)

Step 5 (Aligning tail probabilities across covariates). Under Assumption (iii),

lim
k→+∞

rx(u
(k)
x )

rx̄(u
(k)
x̄ )

= q1 ∈ (0,+∞).

By (36), u(k)x̄ → ūx̄ and u(k)x → ūx. Since ūx̄, ūx < 1 and rx̄(·), rx(·) are continuous near those limits

(by Assumption (iv)), (38) implies

lim
k→+∞

1− u
(k)
x

1− u
(k)
x̄

= 1,
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and therefore

lim
k→+∞

(
u(k)x − u

(k)
x̄

)
= 0. (39)

Step 6 (Identification by differencing). Assumption (i) implies

Qwn(1)|Xn=x(u) = y(1, x) + Qϵn(1)(u) for all u ∈ (0, 1).

Apply (35) at τ = τ
(k)
x and at τ = τ

(k)
x̄ :

Qwn|Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) +Qϵn(1)(u

(k)
x ),

Qwn|Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= y(1, x̄) +Qϵn(1)(u

(k)
x̄ ).

(40)

By (39) and continuity of Qϵn(1) near the upper tail,

lim
k→+∞

(
Qϵn(1)(u

(k)
x )−Qϵn(1)(u

(k)
x̄ )
)
= 0.

Subtracting the equations in (40) and using y(1, x̄) = 0 (Assumption (v)) yields the identification

result:

lim
k→+∞

[
Qwn |Dn=1,Xn=x

(
τ (k)x

)
− Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

) ]
= y(1, x).

Remark. The only substantive difference between Proposition 3 and Proposition 12—apart from the

support restrictions in Assumption (ii)—is that Assumption (iii) in the unbounded case is replaced, in

the bounded case, by a relative tail decay condition. For reference, Assumption (iii) of Proposition 3

posits that there exists an (unknown) constant q1 ∈ (0, 1] such that, for each realisation x of Xn,

lim
w→ω(x)

Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
= q1. (41)

The requirement (41) is too strong—and in fact necessarily violated—under a strict support gap

ωobs(x) < ω(x) (Assumption (ii) of Proposition 12). To see this, Bayes’ rule (Step 1 of the proof)

implies, for any realisation x of Xn and any w,

Swn|Dn=1,Xn=x(w) = Swn(1)|Xn=x(w)
Pr(Dn = 1 | Xn = x, wn(1) > w)

Pr(Dn = 1 | Xn = x)
.

For any w ∈ (ωobs(x), ω(x)) we have Swn|Dn=1,Xn=x(w) = 0 while Swn(1)|Xn=x(w) > 0 and
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Pr(Dn = 1 | Xn = x) > 0, hence

Pr(Dn = 1 | Xn = x, wn(1) > w) = 0 for all w ∈ (ωobs(x), ω(x)).

Therefore the tail selection probability collapses to zero as w → ω(x), forcing q1 = 0 in (41). A

positive limit could arise only in the case ωobs(x) = ω(x), which is excluded by Assumption (ii).

This is why we adopt a relative tail condition in place of (41): it governs the rate at which tail

probabilities vanish across x (via ratios) rather than imposing a common nonzero limit that cannot

hold under a support gap.

B.3 Identification of Support Endpoints

Corollary 6 shows that, when finite, the right and left endpoints of the potential wages wn(1) |

Xn = x are nonparametrically identified. Intuitively, for each x, the endpoints of the observed,

selected wage distribution, ωobs(x) and ωobs(x), are read directly from extreme quantiles: very low

quantiles approach the lower endpoint and very high quantiles approach the upper endpoint. Because

the deterministic part of wages y(1, x) is already known by Proposition 12, we can “shift” these

observed endpoints to learn about the latent endpoints of both the shock ϵn(1) and the potential wage

wn(1) = y(1, x) + ϵn(1). Selection trims the extremes, so the observed support sits inside the latent

one: ωobs(x) ≥ ω(x) and ωobs(x) ≤ ω(x), with ω(x) = y(1, x) + ωϵ and ω(x) = y(1, x) + ωϵ.

Taking the best (tightest) such shifts across x gives bounds:

sup
x
{ωobs(x)− y(1, x)} ≤ ωϵ, ωϵ ≤ inf

x
{ωobs(x)− y(1, x)},

and adding back y(1, x) yields corresponding tighest bounds for ω(x) and ω(x). Moreover, if there

exists a covariate value x⋆ where selection does not truncate the top (ωobs(x
⋆) = ω(x⋆)), the upper

latent endpoint is revealed by the extreme quantile at x⋆:

ωϵ = lim
τ→1

{
Qwn|Dn=1,Xn=x⋆(τ)− y(1, x⋆)

}
,

and then ω(x) = y(1, x) + ωϵ for every x. A symmetric argument applies to the lower endpoint if

selection does not truncate the bottom at some x†.

Corollary 6 (Identification of finite right and left endpoints of ϵn(1) and wn(1)). Maintain the as-

sumptions of Proposition 12, implying that y(1, x) is identified for each realisation x of Xn. In

addition, assume finite and distinct endpoints, with two-sided tail regularity: for each realisation x

8



of Xn,
ω(x) := inf{u : Pr(wn(1) ≤ u | Xn = x) > 0} > −∞,

ω(x) := sup{u : Pr(wn(1) ≤ u | Xn = x) < 1} < +∞,

ωobs(x) := inf{u : Pr(wn ≤ u | Dn = 1, Xn = x) > 0} > ω(x) > −∞,

ωobs(x) := sup{u : Pr(wn ≤ u | Dn = 1, Xn = x) < 1} < ω(x) < +∞,

with Fwn(1)|Xn=x continuous and strictly increasing on (ω(x), wx) ∪ (w′
x, ω(x)) for some wx < w′

x,

and Fwn|Dn=1,Xn=x continuous and strictly increasing on (ωobs(x), w
obs
x ) ∪ ((wobs

x )′, ωobs(x)) for

some wobs
x < (wobs

x )′, as well as continuous at both endpoints:

lim
w→ωobs(x)

Fwn|Dn=1,Xn=x(w) = 0, lim
w→ωobs(x)

Fwn|Dn=1,Xn=x(w) = 1.

Define the shock ϵn(1) (finite) endpoints as:

ωϵ := inf{u ∈ R : Fϵn(1)(u) > 0} > −∞, ωϵ := sup{u ∈ R : Fϵn(1)(u) < 1} < +∞.

Then:

(a) (Observed wage endpoints are identified.) For every realisation x of Xn, ωobs(x) and ωobs(x)

are identified:

ωobs(x) = lim
τ→0

Qwn|Dn=1,Xn=x(τ), ωobs(x) = lim
τ→1

Qwn|Dn=1,Xn=x(τ).

(b) (Sharp bounds for latent endpoints.) For every realisation x of Xn, a lower (resp. upper

bound) bound for ωϵ (resp. ωϵ) and a lower (resp. upper bound) bound for ω(x) (resp. ω(x))

are identified:

Lϵ := sup
x′

{
ωobs(x

′)− y(1, x′)
}

≤ ωϵ, Uϵ := inf
x′

{
ωobs(x

′)− y(1, x′)
}

≥ ωϵ,

ω(x) ≤ min
{
ωobs(x), y(1, x) + Uϵ

}
, ω(x) ≥ max

{
ωobs(x), y(1, x) + Lϵ

}
.

Moreover, these bounds are sharp under the stated assumptions.

(c) (Right endpoint point identification under no top truncation at some x⋆.) If there exists a

known realisation x⋆ of Xn with ωobs(x
⋆) = ω(x⋆) (i.e. the finite right endpoint of the selected

observed wages equals the finite right endpoint of the potential wages; in other words, selec-

tion does not affect the rightmost support of wages at x∗), then, for every realisation x of Xn,

9



ωϵ and ω(x) are identified:

ωϵ = lim
τ→1

[
Qwn|Dn=1,Xn=x⋆(τ)− y(1, x⋆)

]
,

ω(x) = y(1, x) + lim
τ→1

[
Qwn|Dn=1,Xn=x⋆(τ)− y(1, x⋆)

]
.

(d) (Left endpoint point identification under no bottom truncation at some x†.) If there exists a

known realisation x† of Xn with ωobs(x
†) = ω(x†) (i.e. the finite left endpoint of the selected

observed wages equals the finite left endpoint of the potential wages; in other words, selection

does not affect the leftmost support of wages at x†), then, for every realisation x of Xn, ωϵ and

ω(x) are identified:

ωϵ = lim
τ→0

[
Qwn|Dn=1,Xn=x†(τ)− y(1, x†)

]
,

ω(x) = y(1, x) + lim
τ→0

[
Qwn|Dn=1,Xn=x†(τ)− y(1, x†)

]
.

Proof. We present the proof for right endpoints; the argument for left endpoints is symmetric.

(a) Fix any realisation x of Xn. By Assumption (iv) of Proposition 12, Fwn|Dn=1,Xn=x is continu-

ous and strictly increasing on (wobs
x , ωobs(x)) and continuous at the endpoint. Therefore, its upper

quantiles converge to the endpoint, yielding (a).

(b) Fix any realisation x of Xn. Assumption (i) of Proposition 12 implies

ω(x) = y(1, x) + ωϵ. (42)

By Assumption (ii) of Proposition 12, ωobs(x) < ω(x) for each x, so

ωobs(x)− y(1, x) < ω(x)− y(1, x) = ωϵ.

Taking the supremum over x yields a lower bound for ωϵ. Adding y(1, x) gives a lower bound for

ω(x). These bounds are the best possible (sharp) without further restrictions.

(c) Fix any realisation x of Xn. If there exists a known realisation x⋆ of Xn with ωobs(x
⋆) = ω(x⋆),

then by (a), ω(x⋆) is identified:

ω(x⋆) = lim
τ→1

Qwn|Dn=1,Xn=x⋆(τ).

Using (42) written for x∗ and recalling that y(1, x⋆) is identified by Proposition 12 gives ωϵ =

ω(x⋆)− y(1, x⋆). We plug this into (42) and complete the proof.
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B.4 Proposition 3 with Location and Scale Parameters

Propositions 3 and 12 extend to wage specifications in which the shock ϵn(1) is multiplied by a scale

parameter σ(1, Xn) > 0:

wn =
∑

d∈{0,1}

1{Dn = d}wn(d) =
∑

d∈{0,1}

1{Dn = d}
[
y(d,Xn) + σ(d,Xn)ϵn(d)

]
. (43)

Proposition 13 (Identification of y(1, ·) and σ(1, ·)). Assume:

(i) (Exogeneity.) ϵn(1) is independent of Xn.

(ii) (Supports.)23 For each realisation x of Xn,

ω(x) := sup{u : Pr(wn(1) ≤ u | Xn = x) < 1} = +∞,

ωobs(x) := sup{u : Pr(wn ≤ u | Dn = 1, Xn = x) < 1} = +∞,

0 < Pr(Dn = 1 | Xn = x) ≤ 1.

(iii) (Tail Limit.) There exists an (unknown) constant q1 ∈ (0, 1] such that for every realisation x

of Xn,

lim
w→+∞

Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
= q1.

(iv) (Tail Regularity.) For each realisation x of Xn, there exist (unknown) thresholds wx < +∞

andwobs
x < +∞ such that the cumulative distribution functionsFwn(1)|Xn=x andFwn|Dn=1,Xn=x

are continuous and strictly increasing on (wx,+∞) and (wobs
x ,+∞), respectively.

(v) (Normalization.) There exists a known realisation x̄ of Xn with y(1, x̄) = 0 and σ(1, x̄) = 1.

For each realisation x of Xn, define

c(1, x) :=
q1

Pr(Dn = 1 | Xn = x)
∈ (0,∞).

Fix the following sequences

τ
(k)
x̄ := 1− 2−k, τ̃

(k)
x̄ := 1− 3−k, k = 1, 2, . . .

and, for any x, define the x-specific re-indexed tails

1− τ (k)x :=
c(1, x)

c(1, x̄)

(
1− τ

(k)
x̄

)
, 1− τ̃ (k)x :=

c(1, x)

c(1, x̄)

(
1− τ̃

(k)
x̄

)
.

23We focus on the case of unbounded supports. The bounded-support case follows analogously, with the technical
modifications highlighted in Appendix B.2. 11



Then,

σ(1, x) = lim
k→+∞

Qwn|Dn=1,Xn=x(τ
(k)
x )−Qwn|Dn=1,Xn=x(τ̃

(k)
x )

Qwn|Dn=1,Xn=x̄(τ
(k)
x̄ )−Qwn|Dn=1,Xn=x̄(τ̃

(k)
x̄ )

,

and

y(1, x) = lim
k→+∞

[
Qwn|Dn=1,Xn=x(τ

(k)
x )− σ(1, x)Qwn|Dn=1,Xn=x̄(τ

(k)
x̄ )
]
.

Hence y(1, x) and σ(1, x) are identified (under the location and scale normalizations at x̄).

Proof. Fix a realisation x of Xn. For any threshold w, Bayes’ rule gives

Pr(wn > w | Dn = 1, Xn = x) =
Pr(wn(1) > w | Xn = x) Pr(Dn = 1 | Xn = x, wn(1) > w)

Pr(Dn = 1 | Xn = x)
.

Letting w → +∞ and using (iii),

Pr(wn > w | Dn = 1, Xn = x) ∼ c(1, x) Pr
(
wn(1) > w | Xn = x

)
, (w → +∞), (44)

where c(1, x) := q1
Pr(Dn=1|Xn=x)

∈ (0,∞) and “∼” denotes that the ratio of the two sides converges

to 1.

Write S1,x(w) := Swn(1)|Xn=x(w) and Sx(w) := Swn|Dn=1,Xn=x(w). Then, (44) reads as

Sx(w) ∼ c(1, x)S1,x(w) (w → +∞). (45)

By (ii), both right endpoints are +∞; by (iv), the upper-tail CDFs Fwn(1)|Xn=x and Fwn|Dn=1,Xn=x

are continuous and strictly increasing beyond finite thresholds, so their tail quantile maps are the

ordinary inverses on the corresponding index ranges near 1. Hence, by Lemma 2,

Qwn |Dn=1,Xn=x(τ) = Qwn(1) |Xn=x

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1), (46)

where ox(1− τ)/(1− τ) → 0 as τ → 1.

From wn(1) = y(1, x) + σ(1, x)ϵn(1) and Assumption (i), for all u ∈ (0, 1),

Qwn(1) |Xn=x(u) = y(1, x) + σ(1, x)Qϵn(1)(u).

Plugging into (46) gives

Qwn |Dn=1,Xn=x(τ) = y(1, x) + σ(1, x)Qϵn(1)

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1). (47)
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Scale. Evaluate (47) at τ = τ
(k)
x and τ = τ̃

(k)
x :

Qwn |Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) + σ(1, x)Qϵn(1)

(
1− 1−τ (k)x

c(1,x)
+ ox(1− τ (k)x )

)
,

Qwn |Dn=1,Xn=x

(
τ̃ (k)x

)
= y(1, x) + σ(1, x)Qϵn(1)

(
1− 1−τ̃ (k)x

c(1,x)
+ ox(1− τ̃ (k)x )

)
,

(k → +∞).

(48)

Take the difference between the two equations in (48):

∆(k)
x := Qwn|Dn=1,Xn=x(τ

(k)
x )−Qwn|Dn=1,Xn=x(τ̃

(k)
x )

=σ(1, x)
[
Qϵn(1)

(
1− 1−τ (k)x

c(1,x)
+ox(1− τ (k)x )

)
−Qϵn(1)

(
1− 1−τ̃ (k)x

c(1,x)
+ox(1− τ̃ (k)x )

)]
(k → +∞).

(49)

Repeat analogous steps for τ = τ
(k)
x̄ and τ = τ̃

(k)
x̄ and use the normalisations in (v):

∆
(k)
x̄ := Qwn|Dn=1,Xn=x̄(τ

(k)
x̄ )−Qwn|Dn=1,Xn=x̄(τ̃

(k)
x̄ )

=
[
Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
−Qϵn(1)

(
1− 1−τ̃ (k)x̄

c(1,x̄)
+ ox̄(1− τ̃

(k)
x̄ )
)]

(k → +∞).

(50)

By the definition of τ (k)x and τ̃ (k)x ,

1− 1− τ
(k)
x

c(1, x)
= 1− 1− τ

(k)
x̄

c(1, x̄)
, 1− 1− τ̃

(k)
x

c(1, x)
= 1− 1− τ̃

(k)
x̄

c(1, x̄)
.

Therefore, (49) and (50) can be written as

∆(k)
x = σ(1, x)

[
Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox(1− τ (k)x )

)
−Qϵn(1)

(
1− 1−τ̃ (k)x̄

c(1,x̄)
+ ox(1− τ̃ (k)x )

)]
,

∆
(k)
x̄ =

[
Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
−Qϵn(1)

(
1− 1−τ̃ (k)x̄

c(1,x̄)
+ ox̄(1− τ̃

(k)
x̄ )
)]
,
(k → +∞).

(51)

Take the ratio between the two equations in (51). (iv) implies that Qϵn(1) is continuous and strictly

increasing near 1. Since τ (k)x̄ = 1− 2−k and τ̃ (k)x̄ = 1− 3−k are distinct for all k, the denominator of

the ratio is nonzero for all large k. By continuity and ox(1− τ
(k)
x ), ox̄(1− τ

(k)
x̄ ) → 0,

lim
k→+∞

Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox(1− τ

(k)
x )
)
−Qϵn(1)

(
1− 1−τ̃ (k)x̄

c(1,x̄)
+ ox(1− τ̃

(k)
x )
)

Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
−Qϵn(1)

(
1− 1−τ̃ (k)x̄

c(1,x̄)
+ ox̄(1− τ̃

(k)
x̄ )
) .

Therefore,

σ(1, x) = lim
k→+∞

Qwn|Dn=1,Xn=x(τ
(k)
x )−Qwn|Dn=1,Xn=x(τ̃

(k)
x )

Qwn|Dn=1,Xn=x̄(τ
(k)
x̄ )−Qwn|Dn=1,Xn=x̄(τ̃

(k)
x̄ )

.
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Location. Evaluate (47) at τ = τ
(k)
x and, with x = x̄, at τ = τ

(k)
x̄ :

Qwn |Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) + σ(1, x)Qϵn(1)

(
1− 1−τ (k)x

c(1,x)
+ ox(1− τ (k)x )

)
,

Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
,

(k → +∞),

(52)

where we use the normalisations in (v). By the definition of τ (k)x ,

1− 1− τ
(k)
x

c(1, x)
= 1− 1− τ

(k)
x̄

c(1, x̄)
.

Therefore, (52) can be written as

Qwn |Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) + σ(1, x)Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox(1− τ (k)x )

)
,

Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
,

(k → +∞).

(53)

Subtracting the two equations in (53):

Qwn |Dn=1,Xn=x

(
τ (k)x

)
− σ(1, x)Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= y(1, x)+σ(1, x)

[
Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ox(1− τ (k)x )

)
−Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ox̄(1−τ (k)x̄ )

]
(k → +∞).

Also note that ox(1 − τ
(k)
x ) → 0 and ox̄(1 − τ

(k)
x̄ ) → 0 as k → +∞. Therefore, by continuity of

Qϵn(1) near 1 under Assumption (iv),

Qϵn(1)

(
u+ox(1−τ (k)x )

)
−Qϵn(1)

(
u+ox̄(1−τ (k)x̄ )

)
= o(1), u := 1− 1− τ

(k)
x̄

c(1, x̄)
(k → +∞).

Therefore,

lim
k→+∞

[
Qwn |Dn=1,Xn=x

(
τ (k)x

)
− σ(1, x)Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

) ]
= y(1, x)

as desired.

C Extension to Search Models

The quantile approach in Proposition 13 can be used to identify key parameters in equilibrium wage

equations with inherent conditional heteroskedasticity, as in standard search models. For example,

consider a specification in the spirit of Bagger et al. (2014), where the potential wage of worker n at
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time t in firm d ∈ D is

wn,t(d) = ω γαd
d H 1−αd

n,t ϵn,t(d) + (1− ω)(1− δ)Ud
(
Hn,t

)
, (54)

with 0 < ω < 1 the worker’s bargaining weight, γd > 0 firm d’s productivity, αd ∈ [0, 1) the

elasticity of wages with respect to γd, and δ ∈ (0, 1) the discount factor. Here Hn,t denotes human

capital at time t with support Ht, and

Ud
(
Hn,t

)
:= z + δ Eϵn,t∼Fϵn,t

[
f
(
S
(
Hn,t, ϵn,t; ω, αd, γd, δ

))]
,

is the flow value of non-market time, where z is the flow value of unemployment; S(·;ω, αd, γd, δ)

is the match–surplus function; f(·) is a functional of the surplus; and the expectation is taken with

respect to the shock vector ϵn,t with distribution Fϵn,t . The index d on Ud reflects the dependence of

S on (αd, γd). As is standard, we treat δ and ω as known. The parameters to be identified are γd, αd,

and z. The functions f and S are known up to (γd, αd, Fϵn,t).

We consider two cases: (1)Hn,t is observed (or unobserved with known distribution and support);

(2) Hn,t is unobserved with unknown distribution and support.

Case 1: Hn,t is Observed (or Unobserved with Known Distribution and Support). For simplic-

ity, we focus on the case of potential and observed selected wages with unbounded supports. The

bounded-support case follows analogously—together with the possibility of identifying the extreme

support endpoints—with the technical modifications highlighted in Appendix B.2.

Proposition 14, Corollary 7, and Corollary 8 stated below follow immediately from Proposi-

tion 13 and Corollary 1. Specifically, for Proposition 14: replace Xn with Hn,t and define

y(d,Hn,t) := (1− ω)(1− δ)Ud(Hn,t), σ(d,Hn,t) := ω γαd
d H 1−αd

n,t ;

then Proposition 13 identifies y(d,Hn,t) and σ(d,Hn,t). For Corollary 7: once y(d,Hn,t) and

σ(d,Hn,t) are identified, the joint distribution of the shock vector, Fϵn,t , is identified by Corollary 1.

For Corollary 8: once y(d,Hn,t), σ(d,Hn,t), and Fϵn,t are identified, then the parameters αd, γd, and

z follow directly.

Proposition 14 (Identification of y(d,Hn,t) and σ(d,Hn,t)). For each firm d ∈ D and period t ≥ 1,

assume:

(i) (Exogeneity.) ϵn,t(d) is independent of Hn,t.

15



(ii) (Supports.) For each h ∈ Ht,

sup{u : Pr(wn,t(d) ≤ u | Hn,t = h) < 1} = +∞,

sup{u : Pr(wn,t ≤ u | Dn,t = d,Hn,t = h) < 1} = +∞,

0 < Pr(Dn,t = d | Hn,t = h) ≤ 1.

(iii) (Tail Limit.) There exists a constant qt,d ∈ (0, 1] such that for every h ∈ Ht,

lim
w→+∞

Pr
(
Dn,t = d | Hn,t = h, wn,t(d) > w

)
= qt,d.

(iv) (Tail Regularity.) For each h ∈ Ht, there exist thresholds wh,t,d < +∞ and wobs
h,t,d < +∞ such

that the cumulative distribution functions Fwn,t(d)|Hn,t=h and Fwn,t|Dn,t=d,Hn,t=h are continuous

and strictly increasing on (wh,t,d,+∞) and (wobs
h,t,d,+∞), respectively.

(v) (Normalization.) There exists a known h̄ ∈ Ht with y(d, h̄) = 0 and σ(d, h̄) = 1.

Then, y(d, h) and σ(d, h) are identified for each d ∈ D, h ∈ Ht, and t ≥ 1.

Corollary 7 (Identification of Fϵn,t). Let Fϵn,t denote the joint CDF of ϵn,t and Fϵn,t(d) the marginal

CDF of ϵn,t(d). Let Sϵn,t(d) denote the survival function of ϵn,t(d). Maintain Assumptions (i) to (v) of

Proposition 14, implying that y(d, h) and σ(d, h) are identified for each d ∈ D, h ∈ Ht, and t ≥ 1.

For each period t ≥ 1:24

(a) (Marginal Identification.) For each firm d ∈ D, assume ϵn,t(d) belongs to a known parametric

family indexed by the pt,d × 1 vector or parameters µt,d ∈ Mt,d ⊆ Rpt,d . Fix any h ∈ Ht and

choose pt,d+1 distinct large thresholds 0 < w0 < w1 < · · · < wpt,d . Define the function

Φt,d,h :Mt,d → Rpt,d , Φt,d,h(µt,d) :=

(
Sϵn,t(d)

(
w1−y(d,h)
σ(d,h)

;µt,d

)
Sϵn,t(d)

(
w0−y(d,h)
σ(d,h)

;µt,d

) , . . . , Sϵn,t(d)

(
wpt,d

−y(d,h)
σ(d,h)

;µt,d

)
Sϵn,t(d)

(
w0−y(d,h)
σ(d,h)

;µt,d

) ).
If Φt,d,h is injective, then the parameter µt,d is identified.

(b) (Joint Identification.) If the shocks {ϵn,t(d)}d∈D are mutually independent across d ∈ D,

then the joint distribution of ϵn,t(d) is identified as the product of the identified marginals.

24Note that our identification result in Corollary 7 is established period by period; accordingly, the shocks ϵn,t are
allowed to be correlated across periods.
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Alternatively, if a copula Cµt is specified so that

Fϵn,t(v1, . . . , v|D|) = Cµt
(
Fϵn,t(1)(v1;µt,1), . . . , Fϵn,t(|D|)(v|D|;µt,|D|)

)
∀ (v1, . . . , v|D|) ∈ R|D|,

and the copula parameter µt is known, then the joint distribution is identified via the identified

marginals and Cµt . Absent further restrictions on the dependence among {ϵn,t(d)}d∈D, the

joint CDF is partially identified by the sharp Fréchet–Höffding bounds:

max
{∑
d∈D

Fϵn,t(d)(vd;µt,d)− (|D| − 1), 0
}

≤ Fϵn,t(v1, . . . , v|D|) ≤ min
d∈D

Fϵn,t(d)(vd;µt,d)

∀ (v1, . . . , v|D|) ∈ R|D|.

Corollary 8 (Identification of αd, γd, and z). Assume that y(d, h) and σ(d, h) are identified for each

d ∈ D, for every realisation h of Hn,t, and for some period t ≥ 1 (see Proposition 14 for sufficient

conditions). Assume also that the joint distribution of the shock vector, Fϵn,t , is identified for the

same period t ≥ 1 (see Corollary 7 for sufficient conditions). Then the parameters αd, γd, and z are

identified for each d ∈ D.

Proof. Step 1: Identification of αd from σ(d,Hn,t). For any h, h′ in Ht,

σ(d, h)

σ(d, h′)
=

ω γαd
d h 1−αd

ω γαd
d (h′) 1−αd

=

(
h

h′

)1−αd

.

Taking logarithms and rearranging,

αd = 1 −
log
(
σ(d, h)/σ(d, h′)

)
log(h/h′)

.

Note that αd is identified without relying on the scale normalization σ(d, h̄) = 1 in Assumption (v)

of Proposition 14, because the ratio σ(d, h)/σ(d, h′) is identified without any such normalization,

as shown in the proof of Proposition 13. Moreover, to identify αd we do not need to know the

distribution of ϵn,t, Fϵn,t .

Step 2: Identification of γd from σ(d,Hn,t). For any h ∈ Ht, we have

σ(d, h) = ω γαd
d h 1−αd .

Solving for γd yields

γd =
(
σ(d, h)ω−1 hαd−1

)1/αd .
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Note that, unlike αd, the identification of γd relies on knowing the level σ(d, h) and therefore depends

on the scale normalization σ(d, h̄) = 1 in Assumption (v) of Proposition 14. Moreover, as with αd,

to identify γd we do not need to know the distribution of ϵn,t, Fϵn,t .

Step 3: Identification of z from y(d,Hn,t) and Fϵn,t . For any h ∈ Ht, we have

y(d, h) = (1− δ)(1− ω)
[
z + δ Eϵn,t∼Fϵn,t

[
f
(
S
(
h, ϵn,t; ω, αd, γd, δ

))] ]
.

Solving for z yields

z =
y(d, h)

(1− δ)(1− ω)
− δ Eϵn,t∼Fϵn,t

[
f
(
S
(
h, ϵn,t; ω, αd, γd, δ

))]
.

Note that the identification of z relies on knowing the level y(d, h) and therefore depends on the

location normalization y(d, h̄) = 0 in Assumption (v) of Proposition 14. Moreover, unlike αd and

γd, to identify z we need to know the distribution of ϵn,t, Fϵn,t .

Case 1: Alternative Proof. Rather than relying on Proposition 14, we can use a quantile-based

approach that skips the nonparametric identification of y(d,Hn,t) and σ(d,Hn,t) as intermediate steps

and instead leverages directly the parametric structure of the wage equation in (54). We show how

this approach works to identify αd and γd in Proposition 15. We provide a more detailed comparison

between the two approaches at the end of Proposition 15 and its proof. Define

y(d,Hn,t) := (1− ω)(1− δ)Ud(Hn,t), Mn,t(d) := ω γαd
d H 1−αd

n,t ϵn,t(d).

Proposition 15 (Identification of αd and γd). For each firm d ∈ D and some period t ≥ 1, assume:

(i) (Unbounded Upper Tail of Human Capital.) The upper tail of human capital Hn,t is un-

bounded. That is,

lim
p→1

QlogHn,t|Dn,t=d(p) = +∞.

(ii) (Quantile Reminder Negligible Relative to Human Capital.) For each p ∈ (0, 1), define the

conditional quantile reminder

Rt,d(p) := Qlogwn,t|Dn,t=d(p)−
{
logω + αd log γd + (1− αd)QlogHn,t|Dn,t=d(p)

}
. (55)

Then, the contribution of this reminder to the upper observed, selected wages wn,t | Dn,t = d
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grows strictly more slowly than the contribution of human capital Hn,t. That is,

lim
p→1

Rt,d(p)

QlogHn,t|Dn,t=d(p)
= 0. (56)

(iii) (Normalisation.) The upper tail of the remainder Rt,d(p) has a known finite limit. That is,

lim
p→1

Rt,d(p) = Lt,d, (57)

and Lt,d is known.

Assume in addition that Hn,t > 0, wn,t > 0, and ϵn,t(d) > 0 almost surely, so that all logarithms

above are well defined. Then, for each d ∈ D, the parameters αd and γd are identified.

Proof. Step 1: Identification of αd. Fix a firm d ∈ D. Using the structure of the wage equation,

logwn,t(d) = logMn,t(d) + log
(
1 + y(d,Hn,t)

Mn,t(d)

)
. (58)

Using the definition of Mn,t(d),

logMn,t(d) = logω + αd log γd + (1− αd) logHn,t + log ϵn,t(d). (59)

Therefore, substituting (58) in (59),

logwn,t(d) = logω + αd log γd + (1− αd) logHn,t + log ϵn,t(d) + log
(
1 + y(d,Hn,t)

Mn,t(d)

)
. (60)

Now condition on Dn,t = d and apply the conditional quantile operator Q·|Dn,t=d(p) to both sides of

(60). Using only that adding a constant shifts quantiles, we get

Qlogwn,t|Dn,t=d(p) = logω + αd log γd +Q
(1−αd) logHn,t+log ϵn,t(d)+log(1+

y(d,Hn,t)

Mn,t(d)
) |Dn,t=d

(p). (61)

Define the conditional quantile remainder: Rt,d(p)

Rt,d(p) := Qlogwn,t|Dn,t=d(p)−
[
logω + αd log γd + (1− αd)QlogHn,t|Dn,t=d(p)

]
. (62)

Plug-in (61) into (62):

Rt,d(p) = logω + αd log γd +Q
(1−αd) logHn,t+log ϵn,t(d)+log(1+

y(d,Hn,t)

Mn,t(d)
) |Dn,t=d

(p)

−
[
logω + αd log γd + (1− αd)QlogHn,t|Dn,t=d(p)

]
.
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Thus,

Rt,d(p) = Q
(1−αd) logHn,t+log ϵn,t(d)+log(1+

y(d,Hn,t)

Mn,t(d)
) |Dn,t=d

(p)− (1− αd)QlogHn,t|Dn,t=d(p),

and

Qlogwn,t|Dn,t=d(p) = logω + αd log γd + (1− αd)QlogHn,t|Dn,t=d(p) +Rt,d(p). (63)

Fix any p̄ ∈ (0, 1) and define

∆W (p) := Qlogwn,t|Dn,t=d(p)−Qlogwn,t|Dn,t=d(p̄),

∆H(p) := QlogHn,t|Dn,t=d(p)−QlogHn,t|Dn,t=d(p̄),

and

∆R(p) := Rt,d(p)−Rt,d(p̄).

Subtracting (63) evaluated at p and at p̄ yields, for all p ∈ (0, 1),

∆W (p) = (1− αd)∆H(p) + ∆R(p). (64)

By Assumption (i),

lim
p→1

QlogHn,t|Dn,t=d(p) = +∞,

and hence

lim
p→1

∆H(p) = +∞. (65)

Assumption (ii) states that

lim
p→1

Rt,d(p)

QlogHn,t|Dn,t=d(p)
= 0. (66)

By combining (65) and (66), we can show that

lim
p→1

∆R(p)

∆H(p)
= 0. (67)

Indeed, write

∆R(p)

∆H(p)
=

Rt,d(p)−Rt,d(p̄)

QlogHn,t|Dn,t=d(p)−QlogHn,t|Dn,t=d(p̄)
=

Rt,d(p)

QlogHn,t|Dn,t=d(p)
− Rt,d(p̄)

QlogHn,t|Dn,t=d(p)

1−
QlogHn,t|Dn,t=d(p̄)

QlogHn,t|Dn,t=d(p)

. (68)
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As p→ 1, Assumptions (i) and (ii) imply

Rt,d(p)

QlogHn,t|Dn,t=d(p)
→ 0,

Rt,d(p̄)

QlogHn,t|Dn,t=d(p)
→ 0,

QlogHn,t|Dn,t=d(p̄)

QlogHn,t|Dn,t=d(p)
→ 0,

so the numerator of (68) converges to 0 − 0 = 0 and the denominator to 1 − 0 = 1, which yields

(67).

Now divide both sides of (64) by ∆H(p):

∆W (p)

∆H(p)
= (1− αd) +

∆R(p)

∆H(p)
. (69)

Taking limits as p→ 1 on both sides of (69) and using (67), we obtain

lim
p→1

∆W (p)

∆H(p)
= lim

p→1

{
(1− αd) +

∆R(p)

∆H(p)

}
= 1− αd.

This identifies 1 − αd and hence αd. Note that we do not use the normalisation in Assumption (iv)

to identify αd. Assumption (iv) will be used below to identify γd.

Step 2: Identification of γd. Rearranging (63) gives

Rt,d(p) = Qlogwn,t|Dn,t=d(p)− (1− αd)QlogHn,t|Dn,t=d(p)−
(
logω + αd log γd

)
.

Taking limits as p→ 1 on both sides and using the tail normalisation (57), we obtain

Lt,d = lim
p→1

Rt,d(p) = lim
p→1

{
Qlogwn,t|Dn,t=d(p)− (1− αd)QlogHn,t|Dn,t=d(p)

}
−
(
logω + αd log γd

)
.

Hence,

logω + αd log γd = lim
p→1

{
Qlogwn,t|Dn,t=d(p)− (1− αd)QlogHn,t|Dn,t=d(p)

}
− Lt,d.

Solving for αd log γd yields

αd log γd = lim
p→1

{
Qlogwn,t|Dn,t=d(p)− (1− αd)QlogHn,t|Dn,t=d(p)

}
− Lt,d − logω,

so that

γd = exp

(
1

αd

[
lim
p→1

{
Qlogwn,t|Dn,t=d(p)− (1− αd)QlogHn,t|Dn,t=d(p)

}
− Lt,d − logω

])
.

The right-hand side is identified from the conditional joint distribution of (wn,t, Hn,t) given Dn,t =
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d (which determines the limit of Qlogwn,t|Dn,t=d(p) − (1 − αd)QlogHn,t|Dn,t=d(p) as p → 1), the

known constant Lt,d, the known bargaining parameter ω, and the already identified αd. Thus, γd is

identified.

Remark. We now compare the identification approach of Proposition 14, Corollary 7, and Corol-

lary 8 (hereafter, the “first approach”) with the identification approach of Proposition 15 (hereafter,

the “second approach”) for recovering αd and γd. To recap, the first approach identifies the scale

function σ(d,Hn,t) from the upper tail of the observed, selected wage distribution wn,t conditional

on (Dn,t, Hn,t). Given the structural relation σ(d,Hn,t) := ω γαd
d H 1−αd

n,t , αd is then identified from

ratios of σ(d, h) at different values of h, which do not depend on any normalisation for σ(d, ·). The

parameter γd is identified from the level of σ(d, h) at some h and therefore requires a normalisation,

for example σ(d, h̄) = 1 for some h̄.

The second approach does not pass through the intermediate identification of σ(d,Hn,t), but

instead works directly with the log wage equation

logwn,t(d) = logω + αd log γd + (1− αd) logHn,t + error,

and studies conditional upper quantiles of logwn,t and logHn,t given Dn,t = d. Under Assump-

tions (i)–(ii), we obtain as p→ 1:

Qlogwn,t|Dn,t=d(p) = logω + αd log γd + (1− αd)QlogHn,t|Dn,t=d(p) + o
(
QlogHn,t|Dn,t=d(p)

)
,

so that differences in p and ratios of the form ∆W (p)/∆H(p) identify the slope 1 − αd without any

normalisation. The parameter γd is then recovered from an intercept–type tail normalisation on the

composite error term, encoded in Assumption (iii). In this sense, the second approach resembles an

asymptotic linear quantile regression ofQlogwn,t|Dn,t(p) onQlogHn,t|Dn,t(p) in the upper tail: the slope

1−αd is identified from the limiting ratio of quantile differences, while the intercept logω+αd log γd

is pinned down by a normalisation on the tail behaviour of the composite error.

Thus, both approaches are fundamentally based on upper–tail identification. The first approach

looks at the upper tail of wn,t conditional on (Hn,t, Dn,t), while the second approach looks at the

upper tail of logwn,t and logHn,t conditional on Dn,t. Moreover, in both approaches, αd is identified

via a slope argument, while γd requires a normalisation condition.

In the first approach, the key restriction is a tail limit condition (Assumption (iii) of Proposi-

tion 14), which requires that, conditional on human capital Hn,t, the probability of working at firm

22



d given very high potential wages wn,t(d) converges to a firm–specific constant qt,d as w → +∞.

This stabilisation of selection in the upper tail is what allows the tail behaviour of the potential wage

distribution to be recovered from the observed, selected wages. In the second approach, the key

restrictions is a dominance condition (Assumptions (ii) of Proposition 15) on the quantile reminder

which produces an asymptotically linear relation between Qlogwn,t|Dn,t=d(p) and QlogHn,t|Dn,t=d(p)

as p→ 1, from which the slope and intercept can be identified.

Case 2: Hn,t is Unobserved with Unknown Distribution and Support. We proceed in two steps.

First, in Proposition 16, to account for the fact that Ht is unknown, we work in the human-capital

rank space by mapping Hn,t to its quantile (percentile) index via its CDF:

Un,t := FHn,t(Hn,t).

We then identify the rank-mapped primitives

y◦(d, Un,t) := y
(
d, F−1

Hn,t
(Un,t)

)
, σ◦(d, Un,t) := σ

(
d, F−1

Hn,t
(Un,t)

)
,

defined on the support ofUn,t, rather than on the support ofHn,t. Second, in Proposition 10, assuming

that Fϵn,t is known and that two values of Hn,t, ha and hb, corresponding to the values ua and ub of

Un,t, are known, we identify αd, γd, and z.

Proposition 16 (Identification of y◦(d, Un,t) and σ◦(d, Un,t)). Given d ∈ D and t ≥ 1, let Ut,d ⊆

(0, 1) be the set of realisations u of Un,t such that Pr(Dn,t = d | Un,t = u) > 0. For each firm d ∈ D

and period t ≥ 1, assume:

(i) (Exogeneity.) ϵn,t(d) is independent of Un,t.

(ii) (Supports.) For each u ∈ Ut,d,

sup{w : Pr(wn,t(d) ≤ w | Un,t = u) < 1} = +∞,

sup{w : Pr(wn,t ≤ w | Dn,t = d, Un,t = u) < 1} = +∞.

(iii) (Tail Limit.) There exists an (unknown) constant qt,d ∈ (0, 1] such that for every u ∈ Ut,d,

lim
w→+∞

Pr
(
Dn,t = d | Un,t = u, wn,t(d) > w

)
= qt,d.

(iv) (Tail Regularity.) For each u ∈ Ut,d, there exist (unknown) thresholds wu,t,d < +∞ and

wobs
u,t,d < +∞ such that the cumulative distribution functionsFwn,t(d)|Un,t=u andFwn,t|Dn,t=d,Un,t=u
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are continuous and strictly increasing on (wu,t,d,+∞) and (wobs
u,t,d,+∞), respectively.

(v) (Normalisation.) There exists a known ū ∈ Ut,d with y◦(d, ū) = 0 and σ◦(d, ū) = 1.

Then, the functions y◦(d, u) and σ◦(d, u) are identified for each u ∈ Ut,d and d ∈ D.

Proof. The claim is an immediate consequence of Proposition 13 after a change of conditioning

variable from the latent value Hn,t to its rank Un,t := FHn,t(Hn,t). Note that this reparametrisation

is without loss, because by the probability integral transform, Un,t is uniformly distributed on (0, 1),

and conditioning onHn,t is equivalent to conditioning on Un,t. Since the support ofHn,t is unknown,

identification can only be stated for the rank–indexed objects y◦(d, u) and σ◦(d, u), rather than for

y(d, h) and σ(d, h) at the unknown levels h.

Corollary 9 (Identification of Fϵn,t). Let Fϵn,t denote the joint CDF of ϵn,t and Fϵn,t(d) the marginal

CDF of ϵn,t(d). Let Sϵn,t(d) denote the survival function of ϵn,t(d). Maintain Assumptions (i) to (v)

of Proposition 16, implying that y◦(d, u) and σ◦(d, u) are identified for each d ∈ D, u ∈ Ut,d, and

t ≥ 1. For each period t ≥ 1:

(a) (Marginal Identification.) For each firm d ∈ D, assume ϵn,t(d) belongs to a known parametric

family indexed by the pt,d × 1 vector or parameters µt,d ∈ Mt,d ⊆ Rpt,d . Fix any u ∈ Ut,d and

choose pt,d+1 distinct large thresholds 0 < w0 < w1 < · · · < wpt,d . Define the function

Φt,d,u :Mt,d → Rpt,d , Φt,d,u(µt,d) :=

(
Sϵn,t(d)

(
w1−y◦(d,u)
σ◦(d,u)

;µt,d

)
Sϵn,t(d)

(
w0−y◦(d,u)
σ◦(d,u)

;µt,d

) , . . . , Sϵn,t(d)

(
wpt,d

−y◦(d,u)
σ◦(d,u)

;µt,d

)
Sϵn,t(d)

(
w0−y◦(d,u)
σ◦(d,u)

;µt,d

) ).
If Φt,d,u is injective, then the parameter µt,d is identified.

(b) (Joint Identification.) If the shocks {ϵn,t(d)}d∈D are mutually independent across d ∈ D,

then the joint distribution of ϵn,t(d) is identified as the product of the identified marginals.

Alternatively, if a copula Cµt is specified so that

Fϵn,t(v1, . . . , v|D|) = Cµt
(
Fϵn,t(1)(v1;µt,1), . . . , Fϵn,t(|D|)(v|D|;µt,|D|)

)
∀ (v1, . . . , v|D|) ∈ R|D|,

and the copula parameter µt is known, then the joint distribution is identified via the identified

marginals and Cµt . Absent further restrictions on the dependence among {ϵn,t(d)}d∈D, the
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joint CDF is partially identified by the sharp Fréchet–Höffding bounds:

max
{∑
d∈D

Fϵn,t(d)(vd;µt,d)− (|D| − 1), 0
}

≤ Fϵn,t(v1, . . . , v|D|) ≤ min
d∈D

Fϵn,t(d)(vd;µt,d)

∀ (v1, . . . , v|D|) ∈ R|D|.

Corollary 10 (Identification of αd, γd, and z). For each firm d ∈ D and for some period t ≥ 1,

assume that:

(i) y◦(d, u) and σ◦(d, u) are identified for each u ∈ Ut,d (see Proposition 16 for sufficient condi-

tions).

(ii) The distribution Fϵn,t of ϵn,t is identified (see Corollary 9 for sufficient conditions).

(iii) There exist two distinct ranks ua ̸= ub in Ut,d such that the corresponding human-capital levels

ha := F−1
Hn,t

(ua) and hb := F−1
Hn,t

(ub) are known to the researcher.

Then αd, γd, and z are identified for each d ∈ D.

Proof. Step 1: Identification of αd from σ◦(d, Un,t). Recall that

σ◦(d, u) = σ
(
d, F−1

Hn,t
(u)
)

= ω γαd
d

(
F−1
Hn,t

(u)
) 1−αd .

Pick the two ranks ua ̸= ub and their corresponding levels ha := F−1
Hn,t

(ua) and hb := F−1
Hn,t

(ub).

Then
σ◦(d, ua)

σ◦(d, ub)
=

ω γαd
d h 1−αd

a

ω γαd
d h 1−αd

b

=
(ha
hb

) 1−αd

.

Taking logarithms and rearranging yields

αd = 1 −
log
(
σ◦(d, ua)/σ

◦(d, ub)
)

log(ha/hb)
.

Hence, given knowledge of the two ranks ua, ub and their corresponding levels ha, hb, αd is identified.

Step 2: Identify γd from σ◦(d, Un,t). Using any anchored pair (u∗, h∗) with ∗ ∈ {a, b},

σ◦(d, u∗) = ω γαd
d h 1−αd

∗ =⇒ γd =
(
σ◦(d,u∗)

ω h
1−αd
∗

)1/αd

,

which identifies γd.

Step 3: Identify z from y◦(d, Un,t) and Fϵn,t . Pick any anchored pair (u∗, h∗) with ∗ ∈ {a, b}. Since

y◦(d, u∗) = y(d, h∗) is identified and (αd, γd) are now known, while Fϵn,t is known by assumption,
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z is identified as

z =
y◦(d, u∗)

(1− δ)(1− ω)
− δ E ϵn,t∼Fϵn,t

[
f
(
S(h∗, ϵn,t;ω, αd, γd, δ)

)]
.

D Omitted Proofs

Proof of Proposition 3. Fix a realisation x of Xn. For any threshold w, Bayes’ rule gives

Pr(wn > w | Dn = 1, Xn = x) =
Pr(wn(1) > w | Xn = x) Pr(Dn = 1 | Xn = x, wn(1) > w)

Pr(Dn = 1 | Xn = x)
.

Letting w → +∞ and using (iii),

Pr(wn > w | Dn = 1, Xn = x) ∼ c(1, x) Pr
(
wn(1) > w | Xn = x

)
, (w → +∞), (70)

where c(1, x) := q1
Pr(Dn=1|Xn=x)

∈ (0,∞) and “∼” denotes that the ratio of the two sides converges

to 1.

Write S1,x(w) := Swn(1)|Xn=x(w) and Sx(w) := Swn|Dn=1,Xn=x(w). Then, (70) reads as

Sx(w) ∼ c(1, x)S1,x(w) (w → +∞). (71)

By (ii), both right endpoints are +∞; by (iv), the upper-tail CDFs Fwn(1)|Xn=x and Fwn|Dn=1,Xn=x

are continuous and strictly increasing beyond finite thresholds, so their tail quantile maps are the

ordinary inverses on the corresponding index ranges near 1. Hence, by Lemma 2,

Qwn |Dn=1,Xn=x(τ) = Qwn(1) |Xn=x

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1), (72)

where ox(1− τ)/(1− τ) → 0 as τ → 1.

From wn(1) = y(1, x) + ϵn(1) and Assumption (i), for all u ∈ (0, 1),

Qwn(1) |Xn=x(u) = y(1, x) +Qϵn(1)(u).

Plugging into (72) gives

Qwn |Dn=1,Xn=x(τ) = y(1, x) + Qϵn(1)

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1). (73)
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Let {τ (k)x̄ }k≥1 ⊂ (0, 1) with τ (k)x̄ → 1. Define

1− τ (k)x :=
c(1, x)

c(1, x̄)

(
1− τ

(k)
x̄

)
. (74)

Since c(1, x), c(1, x̄) ∈ (0,∞), we have τ (k)x ∈ (0, 1) for all large k and τ (k)x → 1 as k → +∞. Note

also that by (74), 1−τ (k)x = (c(1, x)/c(1, x̄))(1−τ (k)x̄ ), so 1−τ (k)x and 1−τ (k)x̄ are of the same order.

Evaluate (73) at τ = τ
(k)
x and, with x = x̄, at τ = τ

(k)
x̄ :

Qwn |Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) +Qϵn(1)

(
1− 1−τ (k)x

c(1,x)
+ ox(1− τ (k)x )

)
,

Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= y(1, x̄) +Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
,

(k → +∞). (75)

By construction (74),

1− 1− τ
(k)
x

c(1, x)
= 1− 1− τ

(k)
x̄

c(1, x̄)
.

Therefore, (75) can be written as

Qwn |Dn=1,Xn=x

(
τ (k)x

)
= y(1, x) +Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox(1− τ (k)x )

)
,

Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

)
= y(1, x̄) +Qϵn(1)

(
1− 1−τ (k)x̄

c(1,x̄)
+ ox̄(1− τ

(k)
x̄ )
)
,

(k → +∞). (76)

Also note that ox(1 − τ
(k)
x ) → 0 and ox̄(1 − τ

(k)
x̄ ) → 0 as k → +∞. Therefore, by continuity of

Qϵn(1) near 1 under Assumption (iv),

Qϵn(1)

(
u+ox(1−τ (k)x )

)
−Qϵn(1)

(
u+ox̄(1−τ (k)x̄ )

)
= o(1), u := 1− 1− τ

(k)
x̄

c(1, x̄)
(k → +∞).

Subtracting the two equations in (76) and using the normalisation y(1, x̄) = 0 from Assumption (v):

lim
k→+∞

[
Qwn |Dn=1,Xn=x

(
τ (k)x

)
− Qwn |Dn=1,Xn=x̄

(
τ
(k)
x̄

) ]
= y(1, x).

This proves the claim.

*

Lemma 2 (Survival-to-quantile index inversion). Under (ii) and (iv), for fixed realisation x of Xn

and some c(1, x) ∈ (0,∞),

Swn|Dn=1,Xn=x(w) ∼ c(1, x)Swn(1)|Xn=x(w) (w → +∞), (77)
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if and only if

Qwn|Dn=1,Xn=x(τ) = Qwn(1)|Xn=x

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1), (78)

where ox(1− τ)/(1− τ) → 0 as τ → 1.

Proof. (⇒) Assume

Sx(w) ∼ c(1, x)S1,x(w) (w → +∞). (79)

Fix τ → 1 and define

wτ := Qwn|Dn=1,Xn=x(τ). (80)

By (ii), ωobs(x) = +∞, so wτ → +∞ as τ → 1. For τ close enough to 1, wτ lies in the tail region

where (iv) applies; thus, by continuity on the tail and (80),

Fwn|Dn=1,Xn=x(wτ ) = τ,

which is equivalent to

Sx(wτ ) = 1− τ. (81)

From (79) evaluated at w = wτ and (81), we get

S1,x(wτ ) =
1− τ

c(1, x)
+ ox(1− τ) (τ → 1), (82)

where ox(1− τ)/(1− τ) → 0 as τ → 1.

Define

uτ := Fwn(1)|Xn=x(wτ ) = 1− S1,x(wτ ). (83)

By (82)–(83),

uτ = 1− 1− τ

c(1, x)
+ ox(1− τ) (τ → 1). (84)

Since uτ → 1, for τ close enough to 1 we have uτ in the tail index range where Fwn(1)|Xn=x is

invertible; combining this with (83),

wτ =
(
Fwn(1)|Xn=x

)−1
(uτ ) = Qwn(1)|Xn=x(uτ ) (τ → 1). (85)
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Substituting (84) into (85) yields

wτ = Qwn(1)|Xn=x

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1). (86)

Combining (86) with (80) gives (78).

(⇐) Conversely, assume

Qwn|Dn=1,Xn=x(τ) = Qwn(1)|Xn=x

(
1− 1− τ

c(1, x)
+ ox(1− τ)

)
(τ → 1). (87)

Fix τ → 1 and set

uτ := 1− 1− τ

c(1, x)
+ ox(1− τ). (88)

Then, (87) becomes

Qwn|Dn=1,Xn=x(τ) = Qwn(1)|Xn=x(uτ ) (τ → 1). (89)

Since uτ → 1, it lies in the tail index range where (iv) yields invertibility, so

Fwn(1)|Xn=x

(
Qwn(1)|Xn=x(uτ )

)
= uτ . (90)

Applying Fwn(1)|Xn=x to both sides of (89) and using (88)-(90) gives

Fwn(1)|Xn=x

(
Qwn|Dn=1,Xn=x(τ)

)
= 1− 1− τ

c(1, x)
+ ox(1− τ) (τ → 1).

Equivalently, in survival notation,

S1,x

(
Qwn|Dn=1,Xn=x(τ)

)
=

1− τ

c(1, x)
+ ox(1− τ) (τ → 1). (91)

Moreover, by continuity on the tail under (iv),

Sx
(
Qwn|Dn=1,Xn=x(τ)

)
= 1− τ. (92)

Define

wτ := Qwn|Dn=1,Xn=x(τ). (93)

Then, by tail continuity under (iv),

Sx(wτ ) = 1− τ. (94)
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From (92), (93), and (94), with rx(τ) := ox(1− τ)/(1− τ) → 0,

Sx(wτ )

S1,x(wτ )
=

1− τ
1−τ
c(1,x)

(
1 + c(1, x)rx(τ)

) = c(1, x)
1

1 + c(1, x)rx(τ)
= c(1, x){1 + o(1)},

whence

Sx(wτ ) ∼ c(1, x)S1,x(wτ ) (τ → 1).

Finally, since τ 7→ wτ is increasing and unbounded, any sequence w → +∞ can be written as wτk

with τk → 1,

Sx(w) ∼ c(1, x)S1,x(w) (w → +∞),

which is (77).

Proof of Corollary 1, Part (a). Fix a realisation x of Xn. By Bayes’ rule, for any w ∈ R,

Swn|Dn=1,Xn=x(w) = Swn(1)|Xn=x(w)
Pr
(
Dn = 1 | Xn = x, wn(1) > w

)
Pr(Dn = 1 | Xn = x)

.

Using Assumption (iii) of Proposition 3,

Swn|Dn=1,Xn=x(w) ∼ c(1, x)Swn(1)|Xn=x(w) (w → +∞), (95)

where c(1, x) := q1/Pr(Dn = 1 | Xn = x) ∈ (0,∞). Take two thresholds w1, w2 > 0 and let

min{w1, w2} → +∞. Dividing (95) at w = w1 and w = w2 gives

lim
min{w1,w2}→+∞

Swn|Dn=1,Xn=x(w1)

Swn|Dn=1,Xn=x(w2)
=
Swn(1)|Xn=x(w1)

Swn(1)|Xn=x(w2)
. (96)

By Assumption (i) of Proposition 3, wn(1) = y(1, x) + ϵn(1). Hence,

Swn(1)|Xn=x(w) = Pr
(
ϵn(1) > w − y(1, x)

)
= Sϵn(1)

(
w − y(1, x)

)
. (97)

Substituting (97) into (96) yields

lim
min{w1,w2}→+∞

Swn|Dn=1,Xn=x(w1)

Swn|Dn=1,Xn=x(w2)
=

Sϵn(1)
(
w1 − y(1, x)

)
Sϵn(1)

(
w2 − y(1, x)

) . (98)

Now choose p1+1 distinct large thresholds 0 < w0 < w1 < · · · < wp1 and form the p1 ratios

Rj(x) :=
Swn|Dn=1,Xn=x(wj)

Swn|Dn=1,Xn=x(w0)
, j = 1, . . . , p1.
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Applying (98) with (w1, w2) = (wj, w0) for each j and letting all thresholds be large gives

Rj(x) −→
Sϵn(1)

(
wj − y(1, x);µ1

)
Sϵn(1)

(
w0 − y(1, x);µ1

) , j = 1, . . . , p1,

so the observed vector
(
R1(x), . . . , Rp(x)

)
converges to Φ1,x(µ1) as defined in the statement. If Φ1,x

is injective, this limit uniquely determines µ1, establishing identification.

Examples of Corollary 1. Fix a realisation x of Xn. Let 0 < w0 < w1 < w2 be large thresholds

and define

Rj(x) :=
Swn|Dn=1,Xn=x(wj)

Swn|Dn=1,Xn=x(w0)
, j = 1, 2.

We now investigate whether the map from the shock parameters to the 2-vector
(
R1(x), R2(x)

)
is

injective for three common parametric families.

Normal. ϵn(1) ∼ N (µ, σ2), parameters (µ, σ). Let

zj =
wj − y(1, x)− µ

σ
, z0 =

w0 − y(1, x)− µ

σ
.

Then,

Rj(x) =
1− Φ(zj)

1− Φ(z0)
=

1− Φ
(
z0 +∆j/σ

)
1− Φ(z0)

, ∆j := wj − w0 > 0.

For fixed σ,Rj(x) is strictly decreasing in z0; for fixed z0,Rj(x) is strictly decreasing in 1/σ because

∆j > 0 and 1− Φ is strictly decreasing. Hence,

(µ, σ) 7−→
(
R1(x), R2(x)

)
is injective.

Lognormal. ϵn(1) ∼ LN(m,σ2), parameters (m,σ). We have

Rj(x) =
1− Φ

(
log(wj−y(1,x))−m

σ

)
1− Φ

(
log(w0−y(1,x))−m

σ

) =
1− Φ

(
z0 +∆log

j /σ
)

1− Φ(z0)
,

with

z0 =
log(w0 − y(1, x))−m

σ
, ∆log

j = log
(wj − y(1, x)

w0 − y(1, x)

)
> 0.

31



The same monotonicity logic as in the Normal case (now in ∆log
j ) implies injectivity of

(m,σ) 7−→
(
R1(x), R2(x)

)
.

Shifted Pareto. ϵn(1) ∼ µ + Par(α, tmin), parameters (µ, α) (the scale tmin > 0 cancels). For

t > µ+ tmin,

Sϵn(1)(t;µ, α, tmin) =
(t− µ

tmin

)−α
⇒ Rj(x) =

(
wj − y(1, x)− µ

w0 − y(1, x)− µ

)−α

.

Taking logs,

logRj(x) = −α log
( wj − y(1, x)− µ

w0 − y(1, x)− µ

)
, j = 1, 2.

With two distinct j’s these give two equations in (µ, α), each strictly monotone in µ on the admissible

region wℓ − y(1, x)− µ > 0, with common slope −α. Hence

(µ, α) 7−→
(
R1(x), R2(x)

)
is injective; tmin drops out of the ratios and is not identified.

Proof of Corollary 2. We show how to identify the conditional signal distribution

Pr
(
atn = at | Hn,1 = h, Dt

n = dt, en = e
)
, (99)

for each 1 ≤ t ≤ T − 1 and (at, h, dt, e) ∈ At × H × Dt × E , where at := (a1, . . . , at) and dt :=

(d1, . . . , dt), such that Pr
(
Hn,1 = h, Dt

n = dt
)
> 0 and Pr

(
en = e | Hn,1 = h, Dt

n = dt
)
> 0.

By Proposition 4(i) at time t+ 1,

Pr
(
en = e, atn = at | Hn,1 = h, Dt+1

n = dt+1
)
,

is identified for each (e, at) ∈ E × At and (h, dt+1) ∈ H × Dt+1 such that Pr(Hn,1 = h, Dt+1
n =

dt+1) > 0, where dt+1 := (d1, d2, . . . , dt, dt+1) = (dt, dt+1). Using the law of total probability,

Pr
(
en = e, atn = at | Hn,1 = h, Dt

n = dt
)

=
∑
dt+1

Pr
(
en = e, atn = at | Hn,1 = h, Dt+1

n = (dt, dt+1)
)
× Pr

(
Dn,t+1 = dt+1 | Hn,1 = h, Dt

n = dt
)
.

Therefore

Pr
(
en = e, atn = at | Hn,1 = h, Dt

n = dt
)
, (100)
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is identified.

By Proposition 4(i) at time t,

Pr
(
en = e, at−1

n = at−1 | Hn,1 = h, Dt
n = dt

)
is identified for each (e, at−1) ∈ E ×At−1 and (h, dt) ∈ H×Dt such that Pr(Hn,1 = h, Dt

n = dt) >

0, where dt := (d1, . . . , dt) and at−1 := (a1, . . . , at−1).

Therefore,

Pr
(
en = e | Hn,1 = h, Dt

n = dt
)
, (101)

is identified from

Pr
(
en = e | Hn,1 = h, Dt

n = dt
)
=
∑
at−1

Pr
(
en = e, at−1

n = at−1 | Hn,1 = h, Dt
n = dt

)
.

In turn, by combining (100) and (101), the conditional distribution in (99) is identified via the

ratio
Pr
(
en = e, atn = at | Hn,1 = h, Dt

n = dt
)

Pr
(
en = e | Hn,1 = h, Dt

n = dt
) ,

for any e ∈ E such that

Pr
(
en = e | Hn,1 = h, Dt

n = dt
)
> 0.

Proof of Corollary 3. We show how to identify the conditional signal distribution

Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2, en = e

)
,

(102)

for each 1 ≤ t ≤ T − 3 and (at, at+1, at+2, h, dt, dt+1, dt+2, e) ∈ A3 × H × D3 × E such that

Pr
(
Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
> 0 and Pr

(
en = e | Hn,1 = h, Dn,t =

dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
> 0.

By Proposition 4(i) at time t+ 3,

Pr
(
en = e, at+2

n = at+2 | Hn,1 = h, Dt+3
n = dt+3

)
,

is identified for each (e, at+2) ∈ E×At+2 and (h, dt+3) ∈ H×Dt+3 such that Pr(Hn,1 = h, Dt+3
n =

dt+3) > 0, where dt+3 := (d1, d2, . . . , dt−1, dt, dt+1, dt+2, dt+3) = (dt−1, dt, dt+1, dt+2, dt+3) and
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at+2 := (a1, a2, . . . , at−1, at, at+1, at+2) = (at−1, at, at+1, at+2). Using the law of total probability,

Pr
(
en = e, an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
=
∑
at−1

∑
dt−1, dt+3

Pr
(
en = e, at+2

n = (at−1, at, at+1, at+2) | Hn,1 = h, Dt+3
n = (dt−1, dt, dt+1, dt+2, dt+3)

)
× Pr

(
Dt−1
n = dt−1, Dn,t+3 = dt+3 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
.

Therefore,

Pr
(
en = e, an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
,

(103)

is identified.

By Proposition 4(i) at time t+ 2,

Pr
(
en = e, at+1

n = at+1 | Hn,1 = h, Dt+2
n = dt+2

)
,

is identified for each (e, at+1) ∈ E × At+1 and (h, dt+2) ∈ H × Dt+2 such that Pr(Hn,1 =

h, Dt+2
n = dt+2) > 0, where dt+2 := (d1, d2, . . . , dt, dt+1, dt+2) = (dt−1, dt, dt+1, dt+2) and

at+1 := (a1, a2, . . . , at, at+1) = (at−1, at, at+1).

Using the law of total probability,

Pr
(
en = e | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
=
∑
at+1

∑
dt−1

Pr
(
en = e, at+1

n = at+1 | Hn,1 = h, Dt+2
n = (dt−1, dt, dt+1, dt+2))

)
× Pr

(
Dt−1
n = dt−1 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
.

Therefore,

Pr
(
en = e | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
, (104)

is identified.

In turn, by combining (103) and (104), the conditional distribution in (102) is identified via the

ratio

Pr
(
en = e, an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
Pr
(
en = e | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

) ,

for any e ∈ E such that

Pr
(
en = e | Hn,1 = h, Dn,t = dt, Dn,t+1 = dt+1, Dn,t+2 = dt+2

)
> 0.
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Proof of Proposition 5. Step 1: Identification of α(h, d, e) and β(h, d, e). In this step, we identify

the conditional probabilities

α(h, d, e) and β(h, d, e), (105)

for each (h, d, e) ∈ H × D × E such that, for some 1 ≤ t ≤ T − 3, Pr
(
an,t = at, an,t+1 =

at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e
)

is identified for each

(at, at+1, at+3) ∈ A3.

Proof. Fix (h, d, e) ∈ H×D × E and 1 ≤ t ≤ T − 3 such that, for some 1 ≤ t ≤ T − 3, Pr
(
an,t =

at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e
)

is

identified for each (at, at+1, at+3) ∈ A3.

For any (at, at+1, at+2) ∈ A3, using the law of total probability and Assumption 4, we can write

Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e

)
= α(h, d, e)

∑2
ℓ=0 1{at+ℓ=ā}

(
1− α(h, d, e)

)3−∑2
ℓ=0 1{at+ℓ=ā} q(h, d, e)

+ β(h, d, e)
∑2

ℓ=0 1{at+ℓ=ā}
(
1− β(h, d, e)

)3−∑2
ℓ=0 1{at+ℓ=ā} (1− q(h, d, e)

)
,

(106)

where

q(h, d, e) := Pr
(
θn = θ̄ | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e

)
.

Equation (106) is a binomial mixture with two components and three trials. The left-hand side of

(106) is identified by assumption. Following Blischke (1964, 1978), the weights and components

of the binomial mixture in (106), {α(h, d, e), β(h, d, e), q(h, d, e)}, are identified if the number of

trials is greater than or equal to 2r − 1, where r is the number of mixture components. In our

case, r = 2. Therefore, we need to observe workers who remain in job d for at least 2r − 1 = 3

periods, which motivates our focus on periods t, t + 1, t + 2 in (106). In particular, α(h, d, e) and

β(h, d, e) are identified without any labeling indeterminacy with respect to θn, using the restriction

α(h, d, e) > β(h, d, e) imposed by Assumption 4(iii).

Step 2: Identification of the Prior and Posterior Beliefs. In the proof below, we identify the prior

Pr(θn = θ̄ | Hn,1 = h, en = e), (107)
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for each (h, e) ∈ H × E such that, for some d ∈ D, Pr
(
an,1 = a | Hn,1 = h, Dn,1 = d, en = e

)
is

identified and α(h, d, e) and β(h, d, e) are identified.

In turn, the set of realizations of the posterior beliefs {Pn,t}Tt=2 is identified, since each Pn,t can be

computed recursively as in equation (3) using {α(h, d, e), β(h, d, e), Pr(θn = θ̄ | Hn,1 = h, en =

e)}(h,d,e)∈H×D×E .

Proof. Fix (h, d, e) ∈ H×D×E such that Pr
(
an,1 = a | Hn,1 = h, Dn,1 = d, en = e

)
is identified

and α(h, d, e) and β(h, d, e) are identified.

Using the law of total probability and Assumption 4(i) and (iii), we can write

Pr
(
an,1 = a | Hn,1 = h, Dn,1 = d, en = e

)
= α(h, d, e)1{a=ā}

(
1− α(h, d, e)

)
1{a=a}

p1(h, e)

+ β(h, d, e)1{a=ā}
(
1− β(h, d, e)

)
1{a=a} (

1− p1(h, e)
)
,

where p1(h, e) := Pr(θn = θ̄ | Hn,1 = h, en = e). In turn,

p1(h, e) =


Pr(an,1=a|Hn,1=h, Dn,1=d, en=e)−β(h,d,e)

α(h,d,e)−β(h,d,e) if a = ā,
Pr(an,1=a|Hn,1=h, Dn,1=d, en=e)−(1−β(h,d,e))

β(h,d,e)−α(h,d,e) if a = a.
(108)

Therefore, p1(h, e) is identified if Pr(an,1 = a | Hn,1 = h, Dn,1 = d, en = e) is identified,

α(h, d, e) and β(h, d, e) are identified, and α(h, d, e) ̸= β(h, d, e) by Assumption 4(iii).

Remark. Let t ∈ {1, . . . , T − 3} and (h, d, e) ∈ H ×D × E . By Corollary 3,

Pr
(
an,t = at, an,t+1 = at+1, an,t+2 = at+2 | Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d, en = e

)
is identified for each (at, at+1, at+2) ∈ A3 if:

(i) Assumption 1 holds.

(ii) The wage mixture weights in (19) are identified at times t+2 and t+3. See Proposition 4 for

sufficient conditions.

(iii) Pr
(
Hn,1 = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 = d

)
> 0 and Pr

(
en = e | Hn,1 = h, Dn,t =

d, Dn,t+1 = d, Dn,t+2 = d
)
> 0, where the first condition can be verified from the data and

the second from the identification of Leff
h,dt+2 under Proposition 4(iii) for each dt+2 ∈ Dt+2.

By Corollary 2,

Pr
(
an,1 = a | Hn,1 = h, Dn,1 = d, en = e

)
36



is identified for each a ∈ A if:

(i) Assumption 1 holds.

(ii) The wage mixture weights in (19) are identified at times 1 and 2. See Proposition 4 for suffi-

cient conditions.

(iii) Pr
(
Hn,1 = h, Dn,1 = d

)
> 0 and Pr

(
en = e | Hn,1 = h, Dn,1 = d

)
> 0, where the first

condition can be verified from the data and the second from the identification of Leff
h,d under

Proposition 4(iii).

Proof of Proposition 7. Let 2 ≤ t ≤ T , s := (h, κ, p, e) ∈ St, d ∈ D, and s̃ := (h̃, κ̃, p̃, ẽ) ∈ St−1

such that Pr(Dn,t = d, sn,t−1 = s̃) > 0. We have

Pr(sn,t = s | Dn,t−1 = d, sn,t−1 = s̃)

= Pr(Hn,1 = h, κn,t = κ, en = e | Dn,t−1 = d,Hn,1 = h̃, κn,t−1 = κ̃, Pn,t−1 = p̃, en = ẽ)

× Pr(Pn,t = p | Dn,t−1 = d,Hn,1 = h̃, κn,t−1 = κ̃, Pn,t−1 = p̃, en = ẽ).

For (h, e) ̸= (h̃, ẽ), Pr(sn,t = s | Dn,t−1 = d, sn,t−1 = s̃) = 0. For (h, e) = (h̃, ẽ),

Pr(sn,t = s | Dn,t−1 = d, sn,t−1 = s̃)

= Pr(κn,t = κ | Dn,t−1 = d, κn,t−1 = κ̃)

× Pr(Pn,t = p | Dn,t−1 = d,Hn,1 = h, Pn,t−1 = p̃, en = e).

(109)

In (109), Pr(κn,t = κ | Dn,t−1 = d, κn,t−1 = κ̃) is known because κn,t is a known function

of Dt−1
n and κn,t−1 is a known function of Dt−2

n . From equation (3), p can take two values, {p̄, p},

depending on whether an,t−1 = ā or an,t−1 = a. Therefore, Pr(Pn,t = p | Dn,t−1 = d,Hn,1 =

h, Pn,t−1 = p̃, en = e) in (109) can be

Pr(Pn,t = p̄ | Dn,t−1 = d,Hn,1 = h, Pn,t−1 = p̃, en = e) = Pr(an,t−1 = ā | Dn,t−1 = d,Hn,1 = h, en = e),

or

Pr(Pn,t = p | Dn,t−1 = d,Hn,1 = h, Pn,t−1 = p̃, en = e) = Pr(an,t−1 = a | Dn,t−1 = d,Hn,1 = h, en = e).

Moreover, Pr(an,t−1 = a | Dn,t−1 = d,Hn,1 = h, en = e) is identified by Proposition 4(i) at times t

and t− 1; see Step (a) below. Therefore, Pr(sn,t = s | Dn,t−1 = d, sn,t−1 = s̃) is identified.
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Step (a): Useful to Identify the Law of Motion of the State. In this step, we identify the conditional

signal distribution

Pr
(
an,t = a | Hn,1 = h, Dn,t = d, en = e

)
, (110)

for each 1 ≤ t ≤ T − 1 and (a, h, d, e) ∈ A ×H × D × E such that Pr
(
Hn,1 = h, Dn,t = d

)
> 0

and Pr
(
en = e | Hn,1 = h, Dn,t = d

)
> 0.

Proof. By Proposition 4(i) at time t+ 1 and t,

Pr(atn = (at−1, a) | Hn,1 = h,Dt
n = (dt−1, d), en = e), (111)

is identified for each (e, at−1, a, h, dt−1, d) ∈ E × At × H × Dt such that Pr(Hn,1 = h,Dt
n =

(dt−1, d)) > 0 and Pr(en = e | Hn,1 = h,Dt
n = (dt−1, d)) > 0, where dt−1 := (d1, . . . , dt−1) and

at−1 := (a1, . . . , at−1). See Corollary 2.

Moreover,

Pr(Dt
n = (dt−1, d) | Hn,1 = h, en = e) (112)

is identified for each (dt−1, d, h, e) ∈ Dt ×H× E such that Pr(Hn,1 = h | Dt
n = (dt−1, d)) > 0 and

Pr(en = e | Hn,1 = h,Dt
n = (dt−1, d)) > 0. This is because

Pr(Dt
n = (dt−1, d) | Hn,1 = h, en = e)

=

∑
at−1 Pr(en = e, at−1

n = at−1 | Hn,1 = h,Dt
n = (dt−1, d))× Pr(Dt

n = (dt−1, d) | Hn,1 = h)∑
d1
Pr(en = e | Hn,1 = h,Dn,1 = d1)× Pr(Dn,1 = d1 | Hn,1 = h)

,

where:

• Pr(en = e, at−1
n = at−1 | Hn,1 = h,Dt

n = (dt−1, d)) is identified from Proposition 4(i) at time

t for each (e, at−1, h, dt−1, d) ∈ E×At−1×H×Dt such that Pr(Hn,1 = h,Dt
n = (dt−1, d)) > 0.

• Pr(Dt
n = (dt−1, d) | Hn,1 = h) is known from the data for each (dt−1, d, h) ∈ Dt ×H.

• Pr(Dn,1 = d1 | Hn,1 = h) is known from the data for each (d1, h) ∈ D ×H.

• Pr(en = e | Hn,1 = h,Dn,1 = d1) is identified from Proposition 4(i) applied to the first period

for each (e, h, d1) ∈ E ×H×D such that Pr(Hn,1 = h,Dn,1 = d1) > 0.

From (112),

Pr(Dn,t = d | Hn,1 = h, en = e) (113)
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is identified for each (d, h, e) ∈ D ×H× E such that Pr(Hn,1 = h | Dn,t = d) > 0 and Pr(en = e |

Hn,1 = h,Dn,t = d) > 0.

Using the law of total probability, for each a ∈ A,

Pr(an,t = a | Dn,t = d,Hn,1 = h, en = e)

=
∑
dt−1

∑
at−1

Pr(atn = (at−1, a) | Hn,1 = h,Dt
n = (dt−1, d), en = e)× Pr(Dt

n = (dt−1, d) | Hn,1 = h, en = e)/
Pr(Dn,t = d | Hn,1 = h, en = e).

(114)

Therefore, the conditional probability in (110) is identified by (111) to (114).

Proof of Proposition 8. Let 2 ≤ t ≤ T . The conditional probability

Pr(Dn,t = d | Hn,1 = h,Dt−1
n = dt−1, en = e, at−1

n = at−1), (115)

is identified for each (d, h, dt−1, e, at−1) ∈ D×H×Dt−1×E×At−1 such that Pr(Hn,1 = h,Dt−1
n =

dt−1) > 0 and Pr(en = e, at−1
n = at−1 | Hn,1 = h,Dt−1

n = dt−1) > 0, where dt−1 := (d1, . . . , dt−1)

and at−1 := (a1, . . . , at−1). This is because, by Bayes’ rule,

Pr(Dn,t = d | Hn,1 = h,Dt−1
n = dt−1, en = e, at−1

n = at−1)

=
Pr(en = e, at−1

n = at−1 | Hn,1 = h,Dt
n = (dt−1, d)) Pr(Dn,t = d | Hn,1 = h,Dt−1

n = dt−1)

Pr(en = e, at−1
n = at−1 | Hn,1 = h,Dt−1

n = dt−1)
,

where:

• Pr(en = e, at−1
n = at−1 | Hn,1 = h,Dt

n = (dt−1, d)) is identified by Proposition 4(i) at time t

for each (e, at−1, h, dt−1, d) ∈ E×At−1×H×Dt such that Pr(Hn,1 = h,Dt
n = (dt−1, d)) > 0.

• Pr(Dn,t = d | Hn,1 = h,Dt−1
n = dt−1) is known from the data for each (d, h, dt−1) ∈

D ×H×Dt−1 such that Pr(Hn,1 = h,Dt−1
n = dt−1) > 0.

• Pr(en = e, at−1
n = at−1 | Hn,1 = h,Dt−1

n = dt−1) is identified, as shown in (100), from

Proposition 4(i) at time t for each (h, dt−1, e, at−1) ∈ H×Dt−1×E×At−1 such that Pr(Hn,1 =

h,Dt−1
n = dt−1) > 0.

The joint distribution

Pr(Hn,1 = h,Dt−1
n = dt−1, en = e, at−1

n = at−1), (116)

39



is identified from Proposition 4(i) at time t for each (h, dt−1, e, at−1) ∈ H×Dt−1×E×At−1 such that

Pr(Hn,1 = h,Dt−1
n = dt−1) > 0. Given (115), (116), and knowledge of the map gt from realisations

of (Hn,1, D
t−1
n , en, a

t−1
n ) to realisations of sn,t, we identify

Pr(Dn,t = d | sn,t = s),

for all d ∈ D and s ∈ St.

For t = 1, the same steps apply, with the obvious modification that Dn,t−1 and an,t−1 are not

present in the derivations.

Proof of Proposition 9. Let 2 ≤ t ≤ T . From Proposition 4(ii) at time t, we identify

Pr
(
wn,t ≤ w | Hn,1 = h, Dt

n = dt, en = e, at−1
n = at−1

)
, (117)

for each (h, dt, e, at−1) ∈ H × Dt × E × At−1 such that Pr(Hn,1 = h, Dt
n = dt) > 0 and Pr(en =

e, at−1
n = at−1 | Hn,1 = h, Dt

n = dt) > 0, where dt := (d1, . . . , dt) = (dt−1, dt) and at−1 :=

(a1, . . . , at−1).

From Proposition 4(i) at time t, we identify

Pr
(
Hn,1 = h, Dt

n = dt, en = e, at−1
n = at−1

)
, (118)

for each (h, dt, e, at−1) ∈ H ×Dt × E ×At−1 such that Pr(Hn,1 = h, Dt
n = dt) > 0.

From Proposition 4(i) at time t, we identify

Pr
(
Hn,1 = h, Dt−1

n = dt−1, en = e, at−1
n = at−1

)
, (119)

for each (h, dt−1, e, at−1) ∈ H ×Dt−1 × E ×At−1 such that Pr(Hn,1 = h, Dt−1
n = dt−1) > 0.

By taking the ratio between (118) and (119), we identify

Pr
(
Dn,t = dt | Hn,1 = h, Dt−1

n = dt−1, en = e, at−1
n = at−1

)
=

Pr(Hn,1 = h, Dt
n = dt, en = e, at−1

n = at−1)

Pr(Hn,1 = h, Dt−1
n = dt−1, en = e, at−1

n = at−1)
,

(120)

for each (h, dt, e, at−1) ∈ H × Dt × E × At−1 such that Pr(Hn,1 = h, Dt
n = dt) > 0 and Pr(en =

e, at−1
n = at−1 | Hn,1 = h, Dt−1

n = dt−1) > 0.

Let d ∈ D and s ∈ St such that Pr(Dn,t = d | sn,t = s) > 0. Using Bayes’ rule, for each w ∈ R,
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we can write

Pr(wn,t ≤ w | Dn,t = d, sn,t = s)

=
∑

(h,dt−1,e,at−1):
g(h,dt−1,e,at−1)=s

Pr(wn,t ≤ w | Hn,1 = h,Dt−1
n = dt−1, Dn,t = d, en = e, at−1

n = at−1)

× Pr(Hn,1 = h,Dt−1
n = dt−1, Dn,t = d, en = e, at−1

n = at−1)∑
(h,dt−1,e,at−1):

g(h,dt−1,e,at−1)=s

Pr(Hn,1 = h,Dt−1
n = dt−1, Dn,t = d, en = e, at−1

n = at−1)
.

(121)

All the components on the right-hand side of (121) are identified by (117) to (120). Therefore,

Pr(wn,t ≤ w | Dn,t = d, sn,t = s) is identified.

Lastly, we use Assumption 2 to identify Pr(wn,t ≤ w | Dn,t = d, D′
n,t = d′, sn,t = s) from

Pr(wn,t ≤ w | Dn,t = d, sn,t = s). Indeed, under Assumption 2(i), conditioning on Dn,t = d

and sn,t = s also implicitly conditions on the second-best firm D′
n,t entering the wage equation (8).

Moreover, by Assumption 2(ii), we know which firm is D′
n,t. Therefore, we identify Pr(wn,t ≤ w |

Dn,t = d, D′
n,t = d′, sn,t = s).

For t = 1, the same steps apply, with the obvious modification that an,t−1 and Dt−1
n are not

present in the derivations.

The identification of Pr(Dn,t = d | Dn,t = d′, sn,t = s) follows directly from Proposition 8 and

Assumption 2.

E Details on Monte Carlo Simulation

E.1 Simulation Exercise

Here we describe the implementation of the exercise in Section 5.1. Data are generated by tracking

1,000,000 workers over 30 periods (from age 25 to 55). Upon entering the labor market, each

worker is assigned an efficiency type e from K1 possible values. To assign these values, the interval

[−2σ1, 2σ1] is divided into K1 − 1 equal subintervals, with grid points {a1, . . . , aK1} (with σ1 > 0).

For each worker, a number is drawn from the Normal distribution N (0, σ1); if the number falls

within the interval [aj−1, aj], the worker is assigned efficiency type aj; if the number falls below

a1, the worker is assigned efficiency type a1; and if the number falls above aK1 , the worker is

assigned type aK1 . Workers are also assigned gender, education level, and age. In addition, each

worker is given an ability type θn from two possible levels: high ability θ̄ and low ability θ. The
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simulation includes 200 firms. Each firm is assigned a productivity type from K2 possible values,

determined by drawing from a Normal distribution N (0, σ2) in a manner similar to that for workers.

The set D now denotes the collection of labels for the firm productivity types (as opposed to firm

identities in the original model), where a generic label d ∈ D is associated with the productivity type

β0(d) ∈ {b1, . . . , bK2−1}. Note that Bonhomme et al. (2019) also considers economies with a finite

number of worker and firm types.

To generate mobility in the economy, for each worker in each period a draw is made from a

Bernoulli distribution with parameter p. If the draw equals 1, an additional number is drawn from a

Normal distribution N (e × µ, σ2) to determine the type of firm the worker moves to, where µ > 0

and e is the worker efficiency type. The parameter µ significantly influences sorting; when µ is high,

workers with high efficiency tend to match with firms having high productivity.

Finally, beliefs are generated from a uniformly distributed prior and updated via Bayes’ rule by

drawing high and low signals in each period, with high signals being more likely for workers with

high ability θ̄ and low signals more likely for those with low ability θ.

The components of the wage equation (21) are specified as

β1(d, e)Hn,1 = β1,0 exp(e)edu_highn + β1,1 exp(e)gendern,

β2(d, e)κn,t = β2,0 exp(e) + β2,1 exp(e)agen + β2,2 exp(e)age2n,

β3(d, e)Pn,t = β3 exp(e)Pn,t,

where edu_highn and gendern are education (college/noncollege) and gender dummies, and

Ψ(Hn,1, κn,t, Pn,t; ψ(d, e)) = ψ1,1(d)age3n + ψ1,2(d)age4n + ψ2,2(d)(Pn,t)
2 + ψ2,3(d)(Pn,t)

3

+ ψ2,4(d)(Pn,t)
4 + ψ3,1(d)(Pn,t) age + ψ3,2(d)(Pn,t) age2n + ψ3,3(d)(Pn,t) age3n + ψ3,4(d)(Pn,t) age4n

+ ψ4,1(d)(P
2
n,t) age + ψ4,2(d)(P

2
n,t) age2n + ψ4,3(d)(P

2
n,t) age3n + ψ4,4(d)(P

2
n,t) age4n

+ ψ5,1(d)(Pn,t) edu_highn + ψ5,2(d)(P
2
n,t) edu_highn + ψ5,3(d)(P

3
n,t) edu_highn + ψ5,4(d)(P

4
n,t) edu_highn,

with ψi,j(d) :=ψi,j exp(β0(d)). The moments from PSID that discipline simulation parameters are:

• the variance, skewness, and kurtosis of log-earnings;

• the variance of log-earnings at three ages:30, 50, and 65 years old;

• the variance of log earning within cells defined by age-gender-education groups. Age groups

are 5-year groups for a total of 30 cells;
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• the variance of two-years log-earnings growth;

• the growth of average log earnings between 30 and 50 years old;

• the growth of average log earnings between 50 and 65 years old;

• the college premium;

• the gender gap.

We also include the share of the variance accounted for by the worker effect, firm effect, and their

covariance, based on the AKM estimates from Song et al. (2019), that is, the share of log earnings

variance accounted for by workers fixed effects, the share accounted for by firm fixed effects, and

the share accounted for the covariance term (sorting).

E.2 Monte Carlo Simulation

In this Section, we describe a few details of the simulation in Section 5.2. We also describe the data

we use to calibrate the simulated economy.

The Data. To calibrate the economy to match key moments of the distribution of labor earnings in

the US economy, we draw information from the Panel Study of Income Dynamics (PSID). The PSID

is a multi-generational, household-level panel dataset that began in 1968 and tracks the same indi-

viduals and their lineal descendants across time. The survey provides annual observations between

1968 and 1996, and is biennial thereafter. The original study comprised about 5,000 households

(families), and the study currently tracks over 9,000 households. The PSID provides detailed micro-

data on various income sources (e.g., labor earnings, self-employment income), net worth/wealth,

labor force participation, consumption/expenditures, and other factors. Additionally, the PSID col-

lects information on the age, education level, occupation, and industry of the respondent (typically

the head of the household).

From this dataset, we select observations of employed heads of household who are between 22

and 65 years old, have positive labor earnings in a particular period, and belong to the core PSID

sample. Using this sample, we calculate the share of labor earnings within brackets of the income

distribution, and the age profile of the mean and the standard deviation of labor earnings. To calculate

the average labor income profile, we regress log labor earnings on a quartic polynomial in age and

include year fixed effects. For the standard deviation, we calculate the cross-sectional standard

deviation of log labor earnings.
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F Details on Empirical Application

We describe how we construct workers’ variable pay and compute Pn,t. First, given a firm k and

quarter q, we select individuals working full-time at firm k if their earnings exceed the full-time min-

imum wage for the quarter, i.e., 12×5×8×w, wherew is the federal minimum wage (approximately

3,500 USD). For these individuals, we retain only those who remain at firm k for at least 6 quarters.

Second, we define the fraction of variable pay as follows:

• For each worker n in the selected sample, we compute a 5-quarter moving average centered

on quarter q (i.e., two quarters before and two quarters after q). Denote this average by wk,n,q.

• For each quarter q, we calculate rk,n,q = wk,n,q − wk,n,q, where wk,n,q is the observed wage of

worker n in quarter q at firm k.

• We identify a positive jump, denoted by r+k,n,q = rk,n,q, if the following conditions are met:

– rk,n,q/wk,n,q ≥ 0.1 (i.e., the jump is at least 10% of the moving average income),

– |rk,n,q−1/wk,n,q| < 0.1 and |rk,n,q+1/wk,n,q| < 0.1 (ensuring the jump is isolated rather

than part of a permanent increase).

• A negative jump r−k,n,q is identified similarly.

Third, we define three objects:

• Annual wage: wn,t,d =
∑

q

∑
k wk,n,q,where d is the firm among the jobs k held by the worker

that provided the highest wage in that year.

• Positive variable pay: r+n,t,d =
∑

q

∑
k r

+
k,n,q.

• Negative variable pay: r−n,t,d =
∑

q

∑
k r

−
k,n,q.

Given these three objects, we define the fraction of variable pay over total income as ρn,t,d =
r+n,t,d

wn,t,d
,

considering only the positive jumps. This yields a distribution of ρn,t,d for each year t and firm d

across all workers. In turn, a worker is assigned a positive performance signal (equal to 1) if they are

in the top quartile of the ρn,t,d distribution within a year; all other workers receive a signal of zero.

Finally, Pn,t is generated using a uniform prior and updated via Bayes’ rule using the signals derived

from the ρn,t,d distribution.
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