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Abstract

We examine the empirical content of a large class of dynamic matching models of the labor market
with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning about workers’
ability, and firm monopsony power. We allow workers’ ability and human capital, acquired before
and after entry in the labor market, to be general across firms to varying degrees. Such a framework
nests and extends known models of job turnover, occupational choice, wage differentials across oc-
cupations, firms, and industries, and wage inequality across workers and over the life cycle. We
establish intuitive conditions under which the model primitives are semiparametrically identified
solely from data on workers’ wages and jobs, despite the dynamics of these models giving rise to
complex patterns of selection based on endogenously time-varying observables and unobservables.
By exploiting our identification argument, we develop a constructive estimator of the model primi-
tives that relies on simple extremal quantile regression methods commonly used for static selection
models. Through the lens of the framework we propose, we investigate the ability of standard empir-
ical measures of the assortativeness of matching to detect the degree of sorting in the labor market.
We show that typical measures of sorting severely understate its importance because they ignore the
option value of acquired human capital and information about ability for future sorting.
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1 Introduction

Matching models of the labor market have been extensively used in both the labor and macro eco-
nomics literature to study a wide range of phenomena, including workers’ occupational choice and
turnover across firms, wage differentials across occupations, firms, and industries, and wage in-
equality across workers and over the life cycle. At their core, these models interpret workers’ career
paths as the outcome of two key processes that take place as labor market experience accumulates:
workers’ acquisition of new human capital and the gradual learning of workers’ true productivity,
which may be unknown to both workers and firms when workers enter the labor market. Both of
these processes lead workers to progressively match with the jobs and firms at which they are most
productive, as workers’ true and perceived productivity evolve over time.

This framework for careers and labor market sorting based on workers’ accumulation of new hu-
man capital and information about ability encompasses many known models: classic ones of human
capital acquisition and wage growth (Mincer, 1958, 1974;|Ben-Porath, 1967; Becker, 1975)), of learn-
ing and worker turnover (Jovanovic, 1979; [Flinn, [1986)), of static (Heckman and Honor¢, 1990) and
dynamic occupational choice without learning (Keane and Wolpin, [1997) and with learning (Miller,
1984)), of the variability of wages across individuals and over time due to learning (Farber and Gib-
bons, |19996; |Altonj1 and Pierret, 2001)), and many others that nest or extend these models (Jovanovic
and Nyarko| (1997), Gibbons and Waldman| (1999a.b)), Gibbons et al. (2005), Gibbons and Waldman
(2006), Lange (2007), Nagypal (2007), Antonovics and Golan| (2012)), Kahn and Lange| (2014), and
Pastorino|(2024)). For reviews of the literature emphasizing the central role of uncertainty and learn-
ing about workers’ ability in accounting for the dispersion of wages across workers and over the life
cycle, see Gibbons and Waldman| (1999a)) and |[Rubinstein and Weiss| (2000).

Despite the widespread use of these models to measure the determinants of job mobility and
wage inequality, their empirical content is difficult to establish for three well-understood reasons.
First, workers’ career paths result from a complex process of dynamic selection based on multiple
dimensions of unobservables. As a consequence, wages depend on worker, firm, and job character-
istics that are typically hard to measure, serially correlated, and may endogenously evolve over time
as new human capital and information about ability are acquired through employment. Second, firm,
occupation, and industry choices are by their very nature discrete, leading to the standard identifica-
tion challenge of dynamic discrete choice models with unobserved state variables, which are known
to be nonparametrically underidentified. Third, since workers and firms decide on matches by in-
tertemporally trading off the benefits and costs of alternative job opportunities, wages are typically
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highly nonlinear functions of these unobserved variables, which makes standard methods for inter-
active fixed-effect models inapplicable (Bonhomme et al., [2019; Freyberger, |2018). For instance,
a worker of high ability with low human capital or whose ability is uncertain may prefer employ-
ment at a job at which the worker may not be very productive but that allows the worker to acquire
more human capital or more information about ability, which will lead to higher wages. Then, by
arbitrage, equilibrium wages in a competitive labor market depend on the relative option value of
alternative employment possibilities that provide different human capital and information prospects.
But this option value is typically highest at intermediate levels of human capital and information, at
which additional capital or information may induce a worker and a firm to make different employ-
ment, hiring, or assignment decisions—hence the general nonmonotonicity, and thus nonlinearity,
of wages in unobservables. In these settings, the inference about the sources of inequality is further
complicated by firms’ monopsony power, which has been documented to be large (Seegmiller, 2021}
Lamadon et al., 2022), causing sizable systematic deviations of wages from workers’ productivity.

In this paper, we establish a novel result on the identification of this general class of dynamic
models with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning about
workers’ ability, and firm monopsony power using data on only workers’ jobs and wages. Our argu-
ment relies on simple conditions that accommodate arbitrary patterns of selection on endogenously
time-varying unobservables, are easy to verify, and naturally lead to constructive estimators of model
primitives that are straightforward to implement using common methods for static selection models.
Finally, we estimate a general version of our model on U.S. data and find that it helps reconcile a key
empirical puzzle: why measured sorting is typically very low despite the high degree of observed
wage inequality—an outcome that matching models indeed attribute to sorting.

Formally, we study a broad class of non-stationary dynamic matching models in which a finite
number of heterogeneous firms Bertrand compete for a large pool of workers in each period over
a discrete time horizon of either finite or infinite length Firms differ along three dimensions ob-
served by all: their output technology (how labor produces output), human capital technology (how
on-the-job experience generates more skills), and information technology (how output provides in-
formation about a worker’s unobserved ability). For example, a low-wage “‘stepping-stone” job at
which a worker is not that productive in terms of current output may allow a worker to acquire much

new human capital or information about ability. Conversely, a “star” job at which a worker is very

'Bertrand price competition provides an appealing modeling approach for markets with differentiated labor inputs
since it places the bargaining power on the “long side” of the market as in any auction-like mechanism, thus allowing
for a nontrivial and flexible sharing of the surplus arising from matches between firms and workers, without the need for
any of the additional parameters that typical bargaining setups require, such as bargaining weights and haggling costs.
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productive may not provide much human capital or information about ability. Workers also differ
in three dimensions: their initial and acquired human capital (both observed by the model’s agents,
with only the initial component observed by the econometrician), efficiency (a latent time-invariant
characteristic observed to model agents but unobserved to the econometrician), and ability (a latent
time-invariant characteristic that is initially unobserved to both model agents and the econometrician
and is gradually learned by model agents as experience accumulates). As standard in the literature,
since human capital, efficiency, and ability stochastically map into output, which is publicly ob-
served, output (“performance”) provides a noisy signal that firms and workers use to update their
beliefs about a worker’s ability.

We characterize the set of Markov perfect equilibria in this setting and show that equilibrium
wages equal the sum of a worker’s expected one-period output at the firm offering the worker the
second-highest expected present discounted value of wages in a period—the second-best firm as in
a second-price auction—and the dynamic value of the foregone opportunity of human capital and
information acquisition at the second-best firm in that period—a compensating differential. We pin
down equilibrium allocations as the solution to a pseudo-planning problem in which the planner
chooses each period a job for a worker among the set of each firm’s preferred assignment.

Econometrically, this framework amounts to a dynamic generalized equilibrium Roy model with
selection on unobservables, namely, the idiosyncratic match-specific productivity shocks affecting
output (time varying and serially uncorrelated); a worker’s efficiency (time invariant “type”); and the
common beliefs about a worker’s ability (time varying, serially correlated, and endogenously evolv-
ing with a worker’s past job choices). A worker’s efficiency and beliefs about ability determine both
a worker’s expected output and the compensating-differential component of wages. As argued, the
latter affect wages nonadditively and potentially nonmonotonically because it captures the difference
in wage returns from tomorrow onward between accepting a job today at the employing firm and at
the second-best firm. As a difference in future values, it represents an endogenous dynamic payoff
that generally depends on all observable and unobservable characteristics of firms and workers.

The econometric literature on the static Roy model provides methods to account for worker
selection on idiosyncratic shocks that affect the wage equation additively or, more generally, mono-
tonically, since this type of selection already arises in the static Roy setting. However, accounting for
selection on the other two classes of unobservables—worker efficiency and evolving beliefs about
worker ability—in the environments we consider requires a different identification strategy. Our strat-

egy augments the standard qguantile approach for static Roy models with a mixture approach, which



accounts for the multiple dimensions of unobservables in our problem. Namely, we first represent
the wage distribution at any firm and time period, conditional on workers’ job history and other ob-
servables, as a mixture over latent worker classes indexed by worker efficiency and by all possible
histories of signals about ability. We then recover the wage distribution of each latent class from
the corresponding mixture component, which is determined by the distribution of the idiosyncratic
shock that governs the selected job and firm. Similarly, we recover the probabilities of these latent
classes from the mixture weights. We can do so under the mild condition that the wage distribution
can be expressed as a finite mixture whose components are (potentially continuous) Gaussian mix-
tures. We refer to this class of distributions as a generalized finite mixture, since finite mixtures of
continuous Gaussian mixtures are known to approximate any distribution arbitrarily well (Bruni and
Koch, [1985; Nguyen and McLachlan, 2019; |Aragam et al., [2020). Hence, these mixtures are espe-
cially suited to describe general distributions contaminated by selection that do not admit a regular
parametric shape, as firms’ equilibrium wage distributions are in our settings.

As experience accumulates, the weights of such a mixture distribution capture the probabilities
of the employment histories of workers with different observed and unobserved characteristics, in-
cluding their histories of output signals. By concatenating these weights over time, we can recover
from them not only the initial distribution of key unobserved states—namely, worker efficiency and
the evolving beliefs about worker ability—together with their laws of motion, but also conditional
choice probabilities. With the initial distributions and laws of motion of efficiency and beliefs in
hand, we adapt standard quantile methods from the static Roy literature to recover the distribution of
the “potential wage” at each firm, job, and time period from the identified components of the mixture
described, which are contaminated by selection.

Observe that in the class of models we study, exclusion restrictions do not naturally arise—no
state variable that shifts one component of the model leaves others unaffected. In fact, by interpreting
the wage distribution at each firm and point in time as a mixture—the mixture step of our argument—
it is easy to see that in general any variable that affects mixture components also affects mixture
weights and vice versa. As a consequence, we cannot apply well-known identification strategies for
mixture models that rely on excluded variables (see Henry et al., |2014; Compiani and Kitamura,
2016; Jochmans et al., |2017). In the second quantile step of our argument that addresses selection
on productivity shocks, we face the same difficulty that every state variable affects both wages at all
jobs and job choices. Classical identification arguments for the static Roy model instead leverage

excluded regressors with rich support that shift wages only in one job, so that for some workers,



their choice of job is independent of their characteristics. Since such regressors are unavailable in
our context, we adapt this “at-infinity” logic by exploiting the rich support of wages, our continuous
outcome of interest. Intuitively, at extreme wage quantiles, idiosyncratic match-specific productivity
shocks dominate the deterministic component of wages in governing a worker’s job assignment.
Namely, for very high values of a job-specific productivity shock, the corresponding job becomes
by far a worker’s best assignment. Hence, conditioning on working in a particular job is essentially
equivalent to conditioning on a tail event of the job-specific shock. By moving from tail probabilities
to quantiles and evaluating quantiles across groups of workers at suitably matched high quantiles,
the contribution of productivity shocks to wages cancels out and we can recover the deterministic
wage component as desired. From it, each firm’s output technology, the compensating differential in
wages, and the distribution of productivity shocks are immediate to back out. All these objects are
key to measuring the impact of sorting on inequality, which is the focus of our empirical exercise.

To this end, the two-step identification approach described yields a natural estimator that inte-
grates standard finite mixture-model methods, such as the fmm routine in Stata, and extreme-quantile
regression methods, such as the eqregsel routine in Stata (D’Haultfoeuille et al., 2020), which
we implement in our empirical exercise. We note that our approach does not require monotonicity
restrictions on endogenous variables, which are common in the dynamic discrete choice literature
when unobserved states are persistent, or assumptions about the dynamics of states, choices, or out-
comes such as “sufficient mobility”, which are common in the empirical literature on sorting.

We use the econometric approach described to measure how labor market sorting affects U.S.
wage inequality. The most widely used empirical framework for this exercise is that of Abowd et al.
(1999)—hereafter, AKM—which decomposes wages into worker and firm fixed effects, observable
covariates, and random shocks. The impact of sorting on wage inequality is then gauged by the
fraction of the total variance of wages attributable to the covariance between worker and firm effects.
Empirical findings based on this framework often suggest a negligible role for sorting, as implied
by the weak correlations between worker and firm effects; see, for instance, Song et al. (2019) and
Card et al. (2013)E] Building on the insights offered by the class of models we study, we argue that
typical AKM estimates of the correlation between firm and worker effects tend to understate it, as
they omit two key forces. First, the compensating-differential term in the wage equation dampens
the direct impact of worker and firm characteristics on wages, as it compensates workers for the

foregone future wage returns associated with the human capital and information they could have

2Bonhomme et al. (2023) show that once AKM estimates are corrected for biases stemming from workers’ limited
job mobility, the correlation between worker and firm effects in general increases.
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acquired by accepting offers from competing firms rather than their chosen firms. For example,
with persistent uncertainty about ability, a high-type worker in a low-output but steep-learning job,
which offers rich training or informative feedback about how well-suited the worker is for the job,
can be paid less than a low-type worker in a high-output but flat-learning job. This force tends
to equalize wages across very different jobs. Second, endogenous matching frictions—such as the
gradual resolution of uncertainty about ability—prevent high-type workers from immediately joining
the most productive firms. For example, workers might temporarily choose less-productive firms that
offer better training opportunities or better prospects to learn about their productivity. But this is at
odds with the presumption that on average workers sort into the most productive matches given their
true time-invariant characteristics—their fixed effect—especially since workers who turn over the
most, who are key for identification, are less experienced ones so most likely to be mismatched.

To empirically validate these theoretical predictions, we provide both simulation-based and em-
pirical evidence. In a Monte Carlo exercise, we simulate an economy that reproduces key features of
our class of models. We choose model parameters so as to match the distribution of wages from the
Panel Study of Income Dynamics (PSID), a representative survey of U.S. households dating back
to 1968, and AKM-type moments from Song et al.| (2019)) estimated from Social Security Adminis-
tration (SSA) data. Much like in a setting with standard omitted-variable bias, our findings suggest
that when the compensating differential is negative under the true data-generating process—so that
workers match with firms offering jobs with more valuable prospects for human-capital and infor-
mational gains than their competitors—the AKM estimates understate the impact of sorting on wage
inequality, since the omitted compensating differential attenuates the measured output complemen-
tarities between firm and worker characteristics. Conversely, when the compensating differential
is positive—so that workers match with firms offering jobs with less valuable prospects for human
capital and information gains than their competitors—the AKM estimates overstate the impact of
sorting, since the omitted compensating differential amplifies firm-worker complementarities.

Next, we estimate the wage equation implied by our model using U.S. matched employer-
employee data from the Longitudinal Employer-Household Dynamics (LEHD) dataset, which pro-
vides quarterly earnings across 21 U.S. states from the mid 1990s to 2022. Our empirical results cor-
roborate the findings from our simulations. In particular, the AKM estimates of the impact of sorting
on wage inequality are much lower than the estimates implied by our model, which helps resolve
the sorting puzzle. To further support this key finding, we conduct an exercise designed to capture

the global importance of sorting. Specifically, the AKM framework measures sorting solely with



respect to a worker’s fixed characteristic—the time-invariant efficiency type in our framework. By
contrast, our setting allows workers to sort based on multiple time-varying characteristics—namely,
their beliefs about ability and their accumulated human capital. To measure their importance, we
estimate our model primitives and perform a number of random reallocation exercises that compare
the observed wage distribution to counterfactual ones arising when workers and firms match at ran-
dom with and without uncertainty about ability, learning, and human capital acquisition. Intuitively,
if sorting matters, than these counterfactual wage distributions should exhibit markedly less disper-
sion and concentration at the top whenever workers and firms are not choosing the best matches.
Our findings are consistent with this conjecture, which supports the view that the mechanisms we
consider, especially uncertainty and learning about ability, attenuate standard measures of sorting,

thus playing a potentially important role in explaining the typical findings of AKM exercises.

Literature Review. Our paper is related to a large literature on the estimation of human capital and
learning models, including [Heckman| (1976), Cunha and Heckman! (2008), Buchinsky et al.| (2010),
Bagger et al. (2014), and Lamadon et al. (2024); see (Gibbons and Waldman|(1999a), Rubinstein and
Weiss| (2006), and Keane et al.| (2017) for reviews. Our work is the first to provide formal identi-
fication arguments for dynamic matching models in which firms are heterogeneous in their output,
human capital, and information technologies and have monopsony power, whereas workers differ in
both observed and unobserved (to model agents and the econometrician) persistent characteristics.

A large literature has also investigated the empirical content of the static Roy model, including
Chamberlain| (1986)), Heckman| (1990), [Heckman and Honoré| (1990), |/Ahn and Powell| (1993)), Das
et al. (2003)), Newey| (2009), and D’Haultfoeuille and Maurel (2013). Our identification approach
generalizes existing arguments for extreme quantile regression models (Chernozhukov, |2005; Sasaki
and Wang, [2024},|2025)) to account for selection on unobservables in dynamic generalized equilibrium
Roy models without excluded covariates. |D’Haultfoeuille and Maurel| (2013]) propose an identifica-
tion procedure for static Roy models with thin-tailed potential outcome distributions. By contrast,
our approach accommodates wage (and log-wage) distributions with fat tails, such as the Pareto,
lognormal, and Cauchy, which is important for plausibly modeling the U.S. wage distribution. For
sample selection in quantile regression models, see Arellano and Bonhomme| (2017).

Much work has explored the identification of dynamic discrete choice models with correlated
unobserved states, including Kasahara and Shimotsu| (2009), Hu and Shum!/ (2012), An et al.| (2013)),
Shiu and Hu (2013), Hu et al.|(2015), Berry and Compiani (2023), Higgins and Jochmans|(2023)), and

Higgins and Jochmans| (2024)). This work either assumes time-invariant unobserved heterogeneity or
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allows for time-varying, serially correlated heterogeneity but only under high-level restrictions on
endogenous variables such as monotonicity, specific distributional supports for unobserved variables
relative to observed variables, or the availability of instruments. None of these conditions applies to
our setting. Thus, we proceed by exploiting information provided by wages—a continuous outcome
typically not used in this literature—which allows us to identify the law of motion of unobserved
state variables as well as conditional choice probabilities.

Our paper is also related to the extensive literature on sorting that builds and extends the AKM
framework. This literature includes works such as|Card et al.|(2013)), |Card et al.| (2018)), Bonhomme
et al| (2019), and Song et al.| (2019), as well as studies that highlight the importance of correcting
AKM estimates to address bias due to low mobility, including |Abowd et al. (2004), |Andrews et al.
(2008}, 2012)), Kline et al.| (2020), and [Bonhomme et al.| (2023).

Lastly, our paper connects to the literature on the identification of panel-data models with interac-
tive fixed effects without learning (Freyberger (2018)) and with learning |Bunting et al.| (2024)) about
worker characteristics. The wage equation typical of our class of models differs in that unobserv-
ables enter in a potentially nonlinear, nonmonotone, and nonmultiplicative way, which renders the
use of interactive fixed-effect methods infeasible. Moreover, unlike those papers, we allow for dy-
namic selection on multiple unobservables, namely, idiosyncratic productivity shocks (time-varying
and serially uncorrelated), worker efficiency (time invariant), and workers and firms’ beliefs about
worker ability (time-varying, serially correlated, and endogenously evolving with past job choices).

The rest of the paper is organized as follows. Section[2]introduces the model. Section [3| provides
an overview of our identification approach. Section [ presents the formal identification argument
and derives our estimator for the model primitives. Section [5discusses a Monte Carlo exercise that
illustrates its performance and our empirical application. Appendix [A] examines extensions to our

framework. Proofs are collected in Appendix D} Appendices [E]and [ offer additional details.

2 Setup

We consider a canonical and broad class of non-stationary dynamic matching models in which a
finite number of heterogeneous firms Bertrand compete for a large pool of workers in each period
over a discrete time horizon of either finite or infinite length. Firms are heterogeneous along three
dimensions, observed by both sides: their output technology (how labor produces output), human
capital technology (how on-the-job experience generates more skills), and information technology

(how output provides information about a worker’s unobserved ability). Workers are also hetero-



geneous in three dimensions: their initial and acquired human capital (both observed by firms and
workers, with only the initial component observed by the econometrician), their efficiency (a time-
invariant characteristic observed by firms and workers but unobserved by the econometrician), and
their ability (a time-invariant characteristic that is initially unobserved by firms, workers, and the
econometrician, and is gradually learned by firms and workers as experience accumulates). Once
matched, the firm—worker pair produces output and human capital accumulates. As standard in the
literature, since human capital, efficiency, and ability stochastically map into output, which is pub-
licly observed, output (“performance”) provides a noisy signal that firms and workers use to update
their beliefs about a worker’s ability. In the following period, firms post wages anticipating these
dynamics, workers choose among offers given their updated state, and the cycle repeats.

This class of models nests many existing frameworks used in both the labor and macroeconomic
literature to study the determinants of occupational choice, worker turnover, firm-worker sorting,

wage growth, and wage inequality. See Section || for key references.

Some Notational Guidance. Subscript n indexes a worker. A symbol with subscript n (for instance,
X,,) denotes a random variable or vector; the corresponding symbol without the subscript and typ-
ically in lowercase (for instance, x) denotes a realization of that random object. When convenient,
we make functional dependencies explicit—for example, X,,(Z,,, W,,). Retaining the subscript n on
X, (+) indicates a random function: even after fixing realizations Z,, = z and W,, = w, the object
X, (z,w) remains stochastic due to other latent sources of randomness, which we suppress in the

notation to maintain readability.

Firms. There is a finite number of heterogeneous firms, indexed by d € D C N, where 2 < |D |<
oo. Firms produce a homogeneous good sold in a perfectly competitive market at a price normalized
to 1. Each firm d € D operates under a constant-returns-to-scale technology in workers’ labor as the
only input. Firms compete for workers by offering them wages each period for their employment
during that period. The model and econometric results extend to settings in which firms comprise
multiple jobs—the case we consider in our empirical application—where offers specify both a wage
and a job assignment. As we proceed, we highlight features of the multi-job case that warrant special

attention.

Workers. There is a large pool of workers, index by n € N. Upon entering the labor market, each
worker n is endowed with time-invariant characteristics denoted by H,, ;, with support H, which
are observed by workers, firms, and the econometrician. These may include attributes such as gen-
der, race, and education, that capture worker n’s initial human capital. For expositional simplicity,
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we assume H is finite; all arguments extend to continuous f,, ;, with the usual care in handling
conditional probabilities and densities. Worker n has also other skills that are unobserved by the
econometrician and can be distinguished into two components: e,, with support £, which denotes
worker n’s efficiency (a time-invariant productivity multiplier) observed by workers and firms; and
6,, with support ©, which denotes worker n’s ability (a time-invariant skill type), initially unknown
to workers and firms but gradually and symmetrically learned by all based on worker n’s realized
output through a process described in detail later. Both e,, and 6,, are general traits that can influence
worker n’s performance when employed at any firm dﬂ In the model, e,, may be scalar or multi-
dimensional, discrete or continuous. In the econometric analysis, we assume that its support £ is
finite, thereby accommodating multidimensional types while restricting them to finitely many reali-
sations[] Hereafter, we let 6,, take values in © = {0, }, referred to as high (/) and low (6) ability.
This binary assumption simplifies the exposition of the learning process. We maintain the same as-
sumption on 6,, in the econometric section. Extensions to non-finite supports (including continuous

multidimensional e,, and 6,,) are provided in Appendix

Human Capital. Hereafter, we use the letter ¢ to denote a time period, which does not represent
calendar time but rather a worker’s experience in the labor market. Hence, ¢ = 1 denotes the first
period of worker n in the labor marketf_’-] As standard in the literature, worker n accumulates human
capital over time through a process that depends on the initial characteristics (H,, 1, e,,6,) and on
the employment history Dfl_l = (Dna,y...,Dni-1), where D, is a random variable representing
the firm employing worker n in period ¢, with support D. Formally, if employed by firm d € D in
period ¢, worker n with efficiency e,, = e € £ has accumulated a human capital H,, ;(d, e) at the end

of the period, given by
Hn,t(dy 6) - an,t(dy 6) + E(Hn,la Kn,t; du 6) + 6n,t(da 6). (1)

In , H, (d, e) is determined by two components: the labor-input {(H,, 1, kn1; d, €) + €,.(d, €)

3This generality is essential to generate realistic job mobility patterns. If e,, and 6,, were firm-specific and independent
across firms, workers would change jobs predominantly upon poor performance, unlike in typical data where highly
performing workers are observed to switch jobs both within and across firms.

It is straightforward to accommodate a discrete bivariate e,, in which one dimension is as described and the other is
a kth-order Markov process; see [Low et al.| (2010) for a similar formulation.

3To preview Appendix we could allow e,, and 6,, to be continuous and multidimensional—for instance, to capture
settings in which ability and output signals are conjugate normal distributions.

®Some workers may first appear in the dataset several years after their initial entry into the labor market. In the class
of models we study, this affects only the identification of the initial distribution of beliefs about ability—the initial prior.
Specifically, if workers are observed only after their labor market entry, our methodology recovers the prior belief about
worker n’s ability, 6,,, as of worker n’s first appearance in the data, rather than as of the worker’s labor-market entry.
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and the rotal factor productivity (TFP) a,, ;(d, €). In the labor-input component, £, ; := r(H,1, D5 1)
1s a deterministic function—known to workers, firms, and the econometrician—of worker n’s initial
human capital H,, ; and employment history D!~! that captures, for example, market experience and
firm-specific tenure. We denote by /C; the support of k,, ;. £(Hy, 1, knt; d, €) is a (d, e)-specific func-
tion of (H,, 1, knt), known to workers and firms but unknown to the econometrician. €, (d, ) is an
idiosyncratic, (d, e)-specific productivity shock (or amenity), unobserved by the econometrician and
known to workers and firms.

The TFP term a,,.(d, e) is a (d, e)-specific random variable whose distribution may depend on
(Hp1,0,) and can vary across (d,e). Accordingly, 6, affects H,.(d,e) via the distribution of
an¢(d,e). Importantly, the dependence of a, ;(d, e) on 0, is stochastic rather than deterministic:
different realizations of a,;(d, e) may arise even for the same 6,,. Therefore, once realized and ob-
served by workers and firms, a,,+(d, €) serves as a noisy signal of ability—informative about 6,, but
not perfectly revealing. We detail how this signal updates beliefs later in this section.

In most employer-employee match datasets, a,, ;(d, e) is unobserved; thus, this will be the canon-
ical case considered in the econometric analysis. Henceforth, we assume that a,.(d,e) € A =
{a, a}, interpreted as a high (a) and low (a) signal. As with 6,,, this binary specification is adopted for
expositional simplicity. We maintain the same assumption in the econometric section; extensions to

non-finite supports (including continuous multidimensional a,, ;(d, e)) are provided in Appendix

Output Technology. Normalizing labor supply to one, (I]) represents the (potential) output Y;, ;(d, e)

produced by worker n with efficiency e, =e € & at the end of t when employed by firm d € D,
Yoi(d,e) = ani(d,e) + U(Hp, bng;d,e) + ene(d, ). (2)

Because the firm index d enters the function ¢(-;d,e) and the distributions (and realizations)
of the random components a,;(d, ¢) and €,(d, e), firms are ex-ante differentiated by their output
(and human-capital) technologies. For instance, a startup may exhibit higher baseline output and

steeper human-capital accumulation than a back-office operation. Moreover, as is typically the case

"Restricting the dependence on 6,, to operate through the distribution of a, :(d,e) (and not also through
U(Hp 1, knu; d, €)) is for expositional simplicity. More general specifications are admissible—for example, a nonsepara-
ble term £(H,, 1, K¢, an ¢ (d, €); d, e). For the purposes of equilibrium characterisation, it suffices that: (i) H,, +(d, e) is
strictly monotone in whichever component(s) are allowed to depend on 6,,; and (ii) the dependence of H,, ;(d, e) on 6,
is stochastic rather than deterministic. Condition (i) ensures that, upon observing the output Y;, ;(d, €) in equation (@),
workers and firms can invert the mapping and recover the unique realisation of the component(s) through which 6,, af-
fects Y, 1(d, e)—so the signal about 6,, is well defined—which is key for the learning process. Condition (ii) ensures that
learning is nontrivial, that is, 6,, is not revealed after a single observation of output. Lastly, the additive separability of
H, .(d, e) with respect to the idiosyncratic component €, ;(d, €) is common in the literature on dynamic discrete choice
models, and it is exploited both for the equilibrium characterization and for our identification proof.
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in matching frameworks, such output (and human-capital) technologies are allowed to be tailored
to worker n’s characteristics and job history, as reflected in the dependence of the components in
equation (2) on H,, 1, e, 0,,, and x,,;—see the discussion of equation (I)). We present next how firms

differ in their technology of information generation.

Information Technology (Learning Process). At the beginning of each period ¢, firms make wage
offers and workers express acceptance decisions to maximize, respectively, the expected present dis-
counted value of profits (output minus wages) and wages. Before making these decisions, firms and
workers with efficiency e, =e € £ observe initial human capital H,, ;, tenure and experience sum-
marized by &, ¢, and the productivity shocks {¢,+(d, €) }4ep at each potential firm d € D. However,
the TFP components {a, :(d, €) }4ep are observed only at the end of period ¢, after production. As
a result, firms and workers do not know the potential outputs {Y,, ;(d, €) }4ep ex-ante and therefore
make decisions based on their expectations about {a,, ;(d, €) } 4ep and, in turn, about {Y}, +(d, €) } gep.
Since the distribution of each a,,;(d, ¢) depends on 6,,, these expectations depend on beliefs about
0,,. The next paragraph describes how these beliefs are formed.

Firms and workers with efficiency e, =e € £ learn about 6,, based on the common observations
of Y,,+(d, e), and so a,, +(d, e), at the end of each period ¢ at the employing firm d € D. In this precise
sense, a,, ¢(d, e) represents the public noisy signal about worker n’s ability §,, that firms and workers
extract from realized output Y,, ;(d, ). (Recall that a,, +(d, €) is a random function of 6,,. If a,,;(d, e)
was a deterministic function of 6,,, then the value of #,, could be learned in one period after observing
ant(d, €), and thus learning would become trivial.) As standard in the models we nest, we focus on
symmetric learning: all firms and workers share a common belief about #,, in each period ¢. Formally,
at the beginning of period ¢ = 1, firms and workers with efficiency e,, = e € £ have a common prior
belief of ,, = 0, P, 1(e) == Pr(#, = 0 | H,1,e, = e). This prior need not coincide with the true
conditional distribution of #,, and may incorporate any learning about 6,, that has taken place before
entry into the labor market, for instance, during schooling. At the end of period ¢ > 1, firms and
workers observe Y, ;(d, e) at the employing firm d € D, and thus extract the signal a,,+(d, ) about
worker n’s ability 6,,. At the beginning of period ¢ + 1, firms and workers update their belief about
6, based on a,,;(d, e) using Bayes’ rule. Assuming that the performance signals are conditionally

independent over time, the updated belief of 6,, = § can be defined recursively as

a(Hn,l7dae)Pn,t(Dn,t—17e) s =
P (d 6) _ ) a(Hn1,d,€)Pnt(Dn,—1,e)+B(Hn,1,d,e)(1=Pn,t(Dn,i—1,€)) if a"’t(d’ 6) =a (3)
mtHAT (1= (Hn1,,€)) Pt (Dt —1,€) Fa (d o) —
(1—a(Hn1..:0)Prt(Dnt-1,0)+(1—B(Hn1,d,e))1—Pri(Dni1,0) | ant(d, €) = a,
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where P, ;(D,,;_1, e) is the belief at the start of period ¢ with D,, ;_; denoting worker n’s employment

choice at ¢ — 1 (the realisation of D, ;_; is left unspecified in the notation), and

a(Hyq,de) = Pr(an,t(d, e)=a | H,1,Dy;=d,e, =¢,0,= é),
B(Hpny,d,e) ==Pr(any(d,e) =a|Hy1, Doy = d, e, =€,6, =0).

Importantly, because the terms «(H,,1,d, e) and 3(H,, 1, d, e) may vary across firms d, jobs can
differ in their informativeness about #,,. Hence, firms are ex-ante differentiated not only by their
output (and human-capital) technology but also by their information technology. For example, ob-
serving the same high signal a in a problem-solving role (e.g., troubleshooting unexpected issues)
may raise the posterior probability that a worker is high type § more than observing @ in a highly
standardized role (e.g., processing routine transactions); the former technology is more informa-
tive. Consequently, belief updating—and thus the speed of learning about 6,,—depends on the entire

history of jobs undertaken by worker n, as well as worker n’s characteristics, H,, 1, €,, and 0,,.

Expected Output. At the beginning of every period t—before making their decisions—firms and

workers with efficiency e,, = e € D calculate the expected output at firm d € D as

E <Yn7t(d, )

Hn,la I{n,t7 P’n,tu €n = €, 6n,t>

= E(ans(d,€) | sni(€)) + (Hpa, kng;d,e) + ens(d,e) = y(d, sni(e)) + ens(d, €),

where the information available to firms and worker n is collected in s,,; = (Hy, 1, fn.t, Pot, €n) and
€nt = (€nt(d,€) : d € D, e € €); P, is shorthand for the belief P, (D, 1, €,) that §,, = § at the

beginning of ¢, as recursively defined in equation (3); s, ;(e) denotes s,,; evaluated at e,, = e; and
y(d, sni(e)) =E(ans(d,€) | sni(€)) + C(Hp, kng; d,e).

Equilibrium. Given the absence of complementarities in production among workers, to characterize
the model’s equilibrium, we can examine the competition of all firms for one worker at a time
without any loss of generality. We adopt a refinement of the notion of Markov perfect equilibrium,
which we term Robust Markov perfect equilibrium (RMPE). An RMPE consists of wage strategies
for firms and an acceptance strategy for worker n, alongside a belief function such that: (i) the
worker maximizes the expected present discounted value of wages; (ii) each firm maximizes the
expected present discounted value of its profits; (ii1) beliefs are consistently updated according to
Bayes’ rule; and (iv) non-employing firms are indifferent between not employing and employing the

worker. Conditions (i) through (ii1) define a standard MPE, under which multiple MPEs may exist.
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Condition (iv) selects one of such equilibria and hence acts as a refinement condition. We provide
further details on condition (iv) below. Under conditions (i)-(iv), an RMPE exists, is unique, and can
be efficient (Bergemann and Vilimaki, 1996).

More formally, the state that firms face at the time they make their wage offers to worker n con-
sists of (S, €n,¢), and the state that worker n faces at the time they make their acceptance decisions
includes (s, ¢, €,+) and the collection of all firms” wage offers that worker n receives. We denote
by Wi t.4 = Wq(Snt, €nt) the wage offer strategy of each generic firm d and by {wy, 1 4}aep the col-
lection of all wage offer strategies. We denote by [, ;4 = lq(Sn.t; €nt, {Wn.t.qa}dep) the acceptance
strategy of worker n for firm d’s offer—an indicator function, taking value one if d is the employing
firm and zero otherwise—and by {l,,: 4}acp the collection of all acceptance strategies.

Given firms’ strategies, worker n’s acceptance strategy when of efficiency type e, = e € &£

satisfies

W (504(6), €na(€), {nsa(€)}aco) = max >~ lupale) x [wngale)
{ln,t,d(e)}deD deD

4)
+wu—nwmdn/

€n,t+1(e)

E (W<5n,t+1 (€), €npr1(€), {Wani+1(€) acp) | Sni(e), d) dFe] -

In (4) s,,.(e) is the vector s, evaluated at e, = e € &, €,,(e) = (en4(d, €) : d € D), wyq(€) =
(wa(sni(€),nt(€))s lnrale) = la(sni(e), ent(€), {wnral€e) taep), Fe is the cumulative distribution
function of the vector of shocks ¢, ¢(e), d is the discount factor, and 7)(k,, d) is the probability
that worker n leaves the labor market at the end of period ¢, given the accumulated human capital
investments «,,; and the last employing firm d € Dﬂ Note that, in , we assume that for each
e € &, en¢(e) is independent of s, +(e), and that the vectors {¢,+(e)}; are i.i.d. across periods ¢,
as is standard in dynamic models. We maintain this assumption throughout. In our framework,
time persistence in the state is generated through r,; (observed by the researcher) and (P, 4, e,)
(unobserved by the researcher).

Given worker n’s strategy and its competitors’ strategies, firm d’s strategy satisfies

a(spi(e), €ni(e)) = max <ln7t7d(e) X [y(d, Sni(€)) + €nt(d, e) — wpta(e)

wn,t,d(e)
+6u—nmmﬂn/‘ E(Ma(sn041(6)s ng1(e)) | snale), d)dF.] )
€n,t+1(e)
+ > lanel {0 = nlkns, d)] / E(Ma(sn41(e), €ne11(€)) | sngle),d')dF.} ).
d’'eD\{d} €n,t+1(€)

8 Although we have ignored the possibility that a worker is unemployed, in the extension of the model to multi-job
firms, it would be straightforward to allow for an additional job that corresponds to the alternative of home production
(non employment). We have refrained from doing so just for simplicity, as our focus is on the dynamics of matching and
wages generated by human capital and learning as mechanilsgls for persistent wage inequality among workers.



Without condition (iv) for equilibrium, this class of models gives rise to a multiplicity of MPE.
These equilibria are qualitatively similar in that they are characterized by the same allocations regard-
ing which firm employs worker n in each state, resulting in the same on-path outcomes. However,
these equilibria differ in the wages offered by non-employing firms; indeed, non-employing firms can
offer any wage up to the point where they are indifferent between not employing and employing the
worker. Condition (iv) resolves this trivial multiplicity by requiring that non-employing firms offer
wages that make them indifferent between not employing and employing the worker. In particular,
condition (iv) selects an equilibrium in a manner that is standard in the literature on trembling-hand
perfect equilibrium (Selten, 1975). If, say, firm d' € D employs worker n at state (s,,+(e), €,+(€)),

condition (iv) requires for any other firm d € D that

O[1 — n(Kp, d’)]/ EIL;(-|sn(€), d)dF,
en,t+1(e) 6)
= max {Z/(d, Sn,t(e))+€n,t(d7 6) - wn,t,d(e)+5[1 - n(ﬁn,h d)]/ EHd("Sn,t(e)a d)dFe}

w”yt,d(e) En,t+1(e)

Namely, firm d must offer worker n a wage that makes firm d indifferent between not employing
the worker—in which case its payoff is the left side of (6)—and employing the worker—in which
case its payoff is the right side of (6). Importantly, under condition (iv), an employed worker’s
wage is uniquely determined—specifically, it equals the wage offered by the second-best firm plus a

compensating differential, as shown in Proposition [ below.
2.1 Equilibrium Wage

An intuition for how wages are determined can be gained by considering a static model with just
two firms. Recall that in a static model of Bertrand price competition for a homogeneous product
among two firms with heterogeneous output technology, the high productivity (low-cost) firm sells
to a consumer at a price equal to the cost of the low-productivity (high-cost) firm, making the con-
sumer indifferent between the two sellers. Analogously, in the static version of our model with two
firms—where the two firms have heterogeneous output (and human-capital) technologies and there
is no learning—worker n’s wage in period ¢ equals the worker’s output were the worker hired by
the competitor of the employing firm. Thus, in equilibrium, the worker is indifferent between em-
ployment at the employing firm and employment at its competitor. In the special case of perfect
competition, where firms have identical output technology, the worker is paid their output, as the
output at the non-employing firm is the same as at the employing firm.

In the dynamic version of our model with two firms differing in their output, human-capital,
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and information technologies, the same indifference condition holds: in equilibrium, the worker is
indifferent between the employing firm and its competitor. However, additional factors must be taken
into account in this dynamic setting. Specifically, the human capital and information accumulated
during employment at one firm lead to future returns for the worker. Therefore, a firm at which a
worker can accumulate substantial human capital or information can afford to pay a lower wage while
still employing the worker. Conversely, a firm that offers limited opportunities for accumulating
human capital or information must offer a higher wage to attract the worker.

With more than two firms, a similar argument applies—in this case, the two firms competing for a
worker are those offering the two highest expected present discounted values of wages. Specifically,
we demonstrate that worker n’s wage in period ¢ equals the expected output the worker would pro-
duce if hired by the firm ranked as “second-best” in terms of the offered expected present discounted
values of wages—akin to a second-price auction—plus a compensating differential term, which is
either a premium for the missed future returns in terms of human capital and information acquisition
that would have been gained by accepting a job at the second-best firm (and so is positive) or a dis-
count for the greater future returns in terms of human capital and information acquisition that are

gained by accepting a job at the first-best firm (and so is negative).

Wage Equation. Formally, consider the equilibrium ranking of firms based on the expected present
discounted value of the wage they offer to worker 7 in period ¢. Focus on the two firms that provide
the highest expected present discounted values of wage in this ranking. Of these, designate the
“first-best” firm as the employing firm and the “second-best” as the non-employing firm. Hereafter,
we typically denote them as d and d’, respectively. Moreover, let Vi (s,:(€), €,.:(e)) represent the
expected present discounted value of the match surplus generated by worker n and firm d’ at state

(Snt(€), €nt(€)), defined as the sum of the worker’s wage value and firm d”’s profit value.

Proposition 1 (Equilibrium Wage). The equilibrium wage of worker n with efficiency e, = e € £ in

period t, when d € D is the employing firm and d' € D is the second-best firm, is
woi(d,de) = y(d', spi(e)) + VU (d,d, spi(€)) + ens(d,€), with (7)

U(d,d, spi(€)) =01 — n(kn, d')]/ EVa (Snir1(€), €nsri(€)|sni(e), d)dF,

€n,t+1 (6)

o= )] [ V() enen(€)suale). DAE.

€n,t+1(€)

According to Proposition|[I] a worker’s wage is the sum of three terms: y(d', s, ¢(€)) + € (d'; €),

which is the expected per-period output at d’ (after the vector of productivity shocks ¢, ; is realised),
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and V(d,d', s,+(e)), which is a compensating differential. In particular, ¥(d, d’, s, +(e)) is the dif-
ference between two value functions: the first being the (counterfactual) future expected discounted
match surplus value generated by worker n and firm d’ had d’ being chosen by n in period ¢, and the
second being the future expected discounted match surplus value generated by worker n and firm
d’ when worker n chooses firm d in period ¢. Lastly, note that in the expression w,;(d,d’, e), the
subscript (n,t) encapsulates not only the worker and time indices but also any dependence of the
wage on the state (s, :(e), €,¢(e)) that is worker- and time-specific.

An implication of Proposition|[I|for multi-job firms—the case in our empirical application—is the
following. When exogenous separation rates and the human-capital process are sufficiently similar
across firms, if firm d’s job is more informative than firm d"’s in the Blackwell sense, the com-
pensating differential is negative; if it is less informative, the compensating differential is positive.
Intuitively, a firm pays less than static competition would predict when employment there delivers
greater learning about ability (the worker enjoys an informational gain), and pays a premium when
employment there entails forgoing such learning (an informational loss). We emphasise that we do
not impose additional assumptions to guarantee this sign pattern; we note it simply as a qualitative

implication that will help guide the interpretation of some of our empirical results.

Proposition 2 (Sign of Compensating Differential). When the differences n(kp+,d) — n(kn+, d') are
sufficiently small across any two firms d and d' for each k,; and the process of human capital ac-
quisition is sufficiently similar across firms, the compensating differential is negative (respectively,
positive) whenever performance signals at firm d are more (respectively, less) informative than per-

formance signals at firm d'.

2.2 Econometric Model

The model just described can be cast as a dynamic equilibrium generalised Roy model. In particular,
the observed wage of worker 7 in period ¢ is
Woe= > > WDy =d, D, =d e, = chwy(d,de)

(d,d')eD? e€E

3)
> Y Dy =d.D,, =d e, =e}y(d snile)) + V(d,d sn(e) + eni(d€)],

(d,d')eD2 e€E

where D, ; denotes the employing (first-best) firm for worker n in period ¢, with generic realisation
d € D; D;ht denotes the second-best firm, with generic realisation d’ € D; e, denotes worker n’s
efficiency, with generic realisation e € £; w,,;(d, d', e) is the potential wage defined in equation (7));

and s, +(e) denotes the vector of state variables s,,; == (H,, 1, knt, Pot, €,) evaluated at e,, = e.
17



Assumption 1 (Data).The joint distribution of (w,, H, 1, D,;) is known for each period ¢ =

1,....T, with T < . o

Assumption [I] describes the observation scheme maintained throughout. It requires the econo-
metrician to have access to a panel of data on wages, initial attributes, and employment choices. We
keep T finite and presume elsewhere that the number of workers grows arbitrarily large. We make
minimal data requirements to accommodate the limited information typically available in standard
employer-employee matched datasets. In particular, we do not rely on the availability of variables
that can facilitate the identification of the learning process, such as proxies for beliefs or direct in-
formation on performance. In Section 4.8 we show how the availability of such additional data can
simplify some estimation steps under extra assumptions. To simplify the notation, we assume that
the panel is balanced; however, all econometric arguments remain valid even with an unbalanced
panel. The occupation choice D, ; can depend on all the variables entering the equilibrium wage
equation, some of which are not observed by the econometrician, namely e,, P, ;, and €,;. This
dependency arises from the optimising behaviour of workers and firms, leading to dynamic selection

on unobservables.

Primitives of Empirical Interest. We show below how to identify several primitives, which en-
able us to study the fundamental question of measuring the impact of sorting on earnings inequality.
In particular, we identify the “deterministic” wage component ¢(d,d’, s, :(e)) = y(d’, sn(e)) +
U(d,d, s,.(e))—defined as the sum of expected output (net of productivity shocks) and the com-
pensating differential—and the distribution of the productivity-shock vector ¢, ;. We then identify
the output (and human-capital) technology y(d’, s,,+(e)) and thereby disentangle the compensating
differential ¥ (d, d', s, (e)) from ¢(d, d’, s, +(e)). Given y(d', s,(e)), we recover its “determinis-
tic” labor-input component ¢(H,, 1, k., +; d’, e). We also identify the law of motion for the state s,, ;,
including the information technology (learning process). Finally, we identify the distribution of job
choices D,,; conditional on s,,; (conditional choice probabilities, or CCPs). Throughout, we take

the discount factor ¢ as known, as is standard in dynamic models.

3 Overview of Identification

A key primitive for us is the deterministic wage component ¢(-) := y(-) + U(-), which we then use
to separately identify the output (and human-capital) technology y(-) and the compensating differ-
ential U(-). As previewed in Section however, identification of ¢(-) is complicated by selection

of D, ; based on the following unobserved state variables: (i) idiosyncratic productivity shocks e, ;
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(time-varying and serially uncorrelated); (ii) worker efficiency e,, (time-invariant); and (iii) beliefs
P, of workers and firms about worker ability 6,, (time-varying, serially correlated, and endoge-
nously evolving with past occupational choices). The shocks ¢, ; enter additively into the output
component y(-) of the wage equation. Worker efficiency e,, and beliefs P, ; enter both the output
y(-) and the compensating-differential W(-) components; in the latter, they enter nonadditively and,
in general, nonmonotonically. This is because W(-) captures the difference in wage returns—from
t + 1 onward—between accepting today’s job at the employing firm and the second-best alternative.
As a difference in future values, ¥(-) is an endogenous dynamic payoff that generally depends on all
observable and unobservable attributes of firms and workers in an a priori unknown manner.

The econometric literature on the static Roy model offers tools for handling selection on idiosyn-
cratic shocks €, ; that enter the wage equation additively (or, more generally, monotonically)—since
such selection arises in the standard Roy setting as well. By contrast, dealing with the other two
classes of unobservables—e,, and P, ;—in the environments we consider requires a different identi-
fication strategy. Our strategy augments the standard quantile approach for static Roy models with a
mixture approach.

Namely, we first represent the cross-sectional wage distribution at time ¢—conditional on a
worker’s occupational history D! = (Dpas- -, Dyy) and observables H,, ;—as a mixture over la-

tent classes indexed by e,, and by the history of noisy performance signals a’~!

= (an1y-- s ni-1)
about 0,,. (To simplify notation, we henceforth write a,, (D, ,€,) as a,:.) Since the state s, ; =
(Hn1s Knty Pag, €n) is a deterministic function of (H,, 1, D1, e,,, al™t), it follows that each mixture
component is determined by the distribution of €, ; conditional on the selected employing firm in
period ¢, D, ;. We identify the wage distribution of each latent class from the corresponding mixture
component. Similarly, we identify the probabilities of the latent classes from the mixture weights.
We recover such mixture components and weights under mild conditions, namely that the wage dis-
tribution admits a generalised finite mixture representation: a finite mixture whose components are
(potentially continuous) Gaussian mixtures. We use the term generalised finite mixture because finite
mixtures of continuous Gaussian mixtures can approximate any distribution arbitrarily well (Bruni
and Koch|, [1985; [Nguyen and McLachlan, 2019; |Aragam et al., 2020). This class is therefore well
suited to model general, selection-contaminated distributions that need not follow a standard para-
metric form—as in our setting, where the mixture components are contaminated by the selection of
D,, ; based on €, ;.

As workers accumulate experience, the weights of the wage mixture capture the probabilities of
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the employment histories of workers with different observed and unobserved characteristics, includ-
ing their histories of performance signals. By concatenating these weights over time, we identify
not only the initial distributions of the key unobserved state variables—e,, and P, ;—together with
their laws of motion, but also the CCPs. Equipped with these initial distributions and transition laws,
we then adapt standard quantile methods from the static Roy literature to recover, from the iden-
tified mixture components (which, recall, are contaminated by selection of D,,; based on ¢, ), the
deterministic wage ¢(-) at each firm and time period. Lastly, with ¢(-) identified, we identify the
distribution of ¢, ;, the output technology y(-), the compensating differential ¥(-), and the remaining
components of the output (and human-capital) equation.

A challenging feature of the class of models we study is the absence of exclusion restrictions—
that is, there is no state variable that shifts one component of the model while leaving others unaf-
fected. This feature shapes each step of our identification argument. Specifically, by interpreting
the wage distribution as a mixture—the mixture step of our identification argument—any variable
that affects the mixture components also affects the mixture weights, and vice versa. As a result, we
cannot apply well-known identification strategies for mixture models that rely on excluded variables
(see Henry et al., 2014; |Compiani and Kitamura, 2016; Jochmans et al., 2017). Instead, we rely on
the generalised finite mixture representation for identification, as mentioned above.

In the second quantile step of our identification arguments—where we address selection on €, ;
to recover the deterministic wage ¢(-)—the same lack of exclusion restrictions reappears: every
state variable affects wages at all jobs and job choices. Classical identification arguments for the
static Roy model leverage excluded regressors with rich support that shift wages only in one job,
so that for some workers, their choice of job is independent of their unobserved characteristics.
Since such regressors are unavailable here, we cannot follow that route. Instead, we adapt this
“at-infinity” logic by exploiting the rich support of wages. Intuitively, at extreme wage quantiles,
the idiosyncratic productivity shocks ¢, ; dominate the deterministic component of wages ¢(-) in
determining a worker’s job assignment. Namely, for very high values of a job-specific productivity
shock, the corresponding job becomes by far a worker’s best assignment. Hence, conditioning on
working in a job is essentially equivalent to conditioning on a tail event of the shock in that job. By
mapping tail probabilities to quantiles and comparing groups of workers at suitably matched high
quantiles (after a simple selection re-indexing), the contribution of ¢, ; to wages cancels out, allowing
us to recover the deterministic wage o(+) as desired.

As for the rest of this overview, Section [3.1] summarises the identification literature on the static
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Roy model and how we adapt it in the second step of our argument to address selection on €, ;.
Building on this summary, Section [3.2] presents our identification steps in greater detail. Section [

contains all formal arguments—readers primarily interested in our empirical application may skip it.
3.1 A Review of the Identification of the Roy Model

As discussed by French and Taber| (2011)), identification for the Roy model can be achieved either
semiparametrically or even nonparametrically. For an intuitive understanding of the common ap-
proach and the challenges associated with adapting it to our setting, consider, throughout Section

[3.1] a simplified static version of the wage equation in (§)), namely,

wy = > YD, =dhwn(d) = > WD, =d}[y(d, X,) + en(d)], 9)

de{0,1} de{0,1}

obtained by removing the dependence on the second-best firm D;, ,—so all wage components pre-
viously indexed by d’ are now indexed by d only—as well as the dependence on the efficiency type
e, and the time subscript . Here, D := {0, 1} denotes two job alternatives, and the compensating
differential W(-) does not arise in this static version of the model. For the purposes of this section,
the state vector s,, ; is replaced by covariates X,,, which are assumed to be observed by the econome-
trician (whereas in our setting, the law of motion for s,, ; will be identified first via the wage-mixture
step, as previewed above). The vector of shocks €, = (€,(0),€,(1)) is independent of X,,. As is
well known, identifying the deterministic wage components y(1, X,,) and y(0, X,,) in equation (9) is

difficult due to selection of D,, based on €,. To see why, observe that
E(w, | D, =d, X,) = ]E(y(d, X,) +en(d) | D, =d, Xn) =y(d, X,) + E(e,(d) | D, = d, X,,),

where the conditional expectation A(d, X,,) = E(e,(d) | D,, = d, X,,) may differ from its uncondi-
tional counterpart E(e,,(d)), because D,, depends on both X, and ¢,. Consequently, it is impossible

to recover y(d, X,,) from E(w, | D,, = d, X,,) alone without imposing further assumptions.
The Case with Exclusion Restrictions. One way to address selection on ¢, is to rewrite (9) as
wy = > YD, =d}[y(d, X,) + A\d, X)) + un(d)], (10)
de{0,1}

where u,,(d) = €,(d) — A\(d, X,,) and hence, by construction, E(u,(d) | D, = d, X,,) = E(e,(d)),
which is tipically normalized to zero. Then, if X,, can be split into two components, X and X*, such

that y(d, X,,) depends only on X and \(d, X,,) depends only on X *—often referred to as exclusion
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restrictions—it becomes possible to identify y(d, X), provided that certain additional assumptions
on y(-) and A(-) hold (Ahn and Powell, 1993; Newey, 2009; Das et al., 2003)

Another way to address selection on ¢, consists of relying on worker-job-specific covariates
with a sufficiently rich support that influence the wage in one job only, representing another type of

exclusion restriction (Heckman and Honoré, [1990). In particular, suppose we can express (9) as

wy = > YDy, =d}[y(d, X,(d)) + en(d)], (11)

de{0,1}

where X,,(d) is now a worker-job-specific covariate (scalar, for simplicity) that exclusively affects
the potential wage in job d. Consider two realizations z; and Z; of X,,(1) and suppose that we can
correspondingly find two values xy and %, of X,,(0) such that Pr(D, = 1 | X,, = (z9,21)) =
Pr(D, = 1| X,, = (Z9,Z1)). In a setting where worker n chooses the job with the highest wage,
E(e,(1) | X, = (w0, 21), D,y = 1) = E(e,(1) | Xy, = (%0,721), Dy, = 1). Thus,

E(wn | Xn = (l’o,iL'l), Dn = 1) - E(wn | Xn - (jOajl)a Dn = 1) = y(laxl) - y(]-ajl)v

and so the difference y(1, x1) —y(1, Z1) is identified. As long as X,,(0) sufficiently varies, the whole
function y(1, X,,(1)) can be identified up to location. We can also proceed further and completely
identify y(1, X,,(1)) as follows. Suppose y(0, X,,(0)) is linear and increasing in X,,(0), and X, (0)
has unbounded support. Then, for any realization z; of X,,(1),

lim Pr(D,=1|X, = (z9,21)) = 1, (12)

To—r—00

and by the law of total probability,

lim E(e,(1) | Dy =1, X, = (z0,21))= lim E(en(1) | X, = (w0, 21)) = E(en(1)).

xo—>—00 To—r—00

Therefore, under the normalisation E(e,, (1)) = 0,

lim E(w, | D, =1,X,=(x9,21)) = lim E(w,(1) | X, = (zo,21)) = y(1,21),

Tro—>—00 To—r—00

and y(1, ) is identified from knowledge of lim,,, - E(w, | D, = 1,X,, = (x,21))—hence,
the phrase identification at infinity (Chamberlain, 1986} |Heckman, [1990). In summary, condition
(T2) eliminates the impact of selection from the first moment of the wage distribution of a group

of individuals with extreme values of X,,(0). For this group, the expected potential wage in job
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1 conditional on choosing job 1, which is observed from the data, is equal to the unconditional

expected potential wage in job 1, which is generally unobserved from the data.

Challenges Specific to Our Setting. The identification strategies discussed, which rely on exclusion
restrictions, cannot be adapted to the class of models we consider, as these models do not admit such
restrictions. That is, even in an ideal scenario where all state variables are observed and can thus be
treated as standard covariates, in our class of models these state variables influence both wages and
the selection-correction term \(-). Indeed, any variable that affects wages also affects the probability
that workers choose a particular job, thereby determining A(-). Conversely, the probability that
a worker opts for a given job determines the wages firms are willing to offer. As a result, state
variables cannot be partitioned into distinct components that separately affect wages and A(-).
Furthermore, the class of models we study lacks worker-job-specific state variables affecting the
wage in one job only, which are essential for implementing the at-infinity identification strategy of
Chamberlain| (1986) and Heckman, (1990). One might wonder about three potential candidates for
such worker-job-specific variables: beliefs about a worker’s ability, worker’s tenure at the job, and
other worker-job-specific wage components, such as a worker’s distance from a job location, which
must be observed in the data or identifiable. However, none of these applies to our setting. Indeed,
as highlighted in Section [2| we allow ability 6,, to be general across jobs, rather than restricting it
to be specific to a particular job. Thus, the belief about a worker’s ability is represented by a single
probability distribution, P, ;, over the worker’s possible levels of ability affecting wages at all jobs—
rather than a collection of job-specific probability distributions over the worker’s possible levels
of ability, influencing each corresponding wage—and is shaped by the worker’s entire job history.
Similarly, the human capital accumulation process, which affects a worker’s output, may depend on
the experience gained in all jobs. As a result, variables such as job tenure included in &, ; impact
wages in all jobs. Lastly, in the current model version, a worker’s value of non-employment (non-
market time) does not impact equilibrium wages. Consequently, variables such as distance from the
job location are not included in the equilibrium wage equation. These could be incorporated through
wage bargaining. However, they are typically difficult to observe in standard employer-employee

match datasets; for instance, they are absent in the LEHD datasetm

The Case without Exclusion Restrictions: Our Approach. Without covariates that serve as exclu-

sion restrictions, we adapt an “at-infinity”” argument that exploits the rich support of wages—rather

°In Appendix [C| we discuss how the argument in this section also applies to models with search and matching
frictions in which wages are bargained and a worker’s value of non-employment affects wages unlike in our framework.

10F, irm-specific covariates fixed at the worker level—for instance, firm size or revenues—are often available in datasets,
yet do not provide enough variation for identification in the Roy model.
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than excluded covariates—to address the problem of selection on ¢,,. Specifically, far out in the upper
tail—at extremely high wages—selection into a job (say, job 1) is easy to account for: conditional on
receiving a very high wage in job 1, the probability of actually being observed in job 1 converges to
a constant. In practical terms, selection merely rescales the extreme right tail of the observed wage
distribution, so that selection just shifts the tail up or down but does not change how fast it thins
out as wages grow. Under the assumption that the wage distribution is well-behaved in that far-right
region—namely, continuous and strictly increasing, a regularity feature of many distributions (in-
cluding both light-tailed and heavy-tailed)—tail probabilities and quantiles are one-to-one related.
This property lets us express extreme quantiles of observed wages as extreme quantiles of potential
job-1 wages, evaluated at a slightly adjusted quantile that corrects for the selection scaling. We then
compare any group x to a reference group  whose job-1 intercept y(1, ) is normalised to zero. We
choose sufficiently high quantiles for each group so that, after the selection correction, both groups
are effectively evaluated at the same quantile of their potential wage distributions. With this align-
ment, the shock component loads identically across groups and cancels when we difference the two
extreme observed quantiles, without imposing any further restrictions. What remains is precisely the
structural component of the wage for group x relative to the reference, y(1,z) — y(1,Z). Because
y(1, ) is normalised to zero, that difference equals the target parameter y(1, =), which is therefore
identified (up to a location normalisation).

We now formalize this result for the simplified static wage equation (9)) in Proposition 3] We
focus on job 1, but a symmetric argument applies to job 0. In Section 4] we present the analogue of

Proposition [3|for our general class of dynamic models.
Proposition 3 (Deterministic Wage Component). Assume:

(i) (Exogeneity.) €,(1) is independent of X,.
(ii) (Supports.) For each realisation x of X,,

w(z) =sup{u : Pr(w,(1) <u| X, =) <1} = 400,
Wobs() == sup{u : Pr(w, <u| D, =1,X, =) <1} = +o0,

0<Pr(D,=1|X,=2)<1.

(iii) (Tail Limit.) There exists an (unknown) constant q, € (0, 1] such that for each realisation x of
X,
lim Pr(Dn =1|X, ==z w,(1) > w) =q.

w——+00
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(iv) (Tail Regularity.) For each realisation v of X,, there exist (unknown) thresholds w, < +oo

obs

and w;

< +o00 such that the cumulative distribution functions F,, (1) x,,=2 and Fuy,,|p,=1,X, =z

are continuous and strictly increasing on (w,, +00) and (WS>, +00), respectively.

(v) (Normalization.) There exists a known realisation T of X,, with y(1,z) = 0.

For each realisation x of X, define

q1

1 =
AL2) = B =1 X, =)

€ (0,00).

Let {Ték)}kzl C (0,1) be any sequence with 755’“) — las k — +o00. Define

1— ngk) = (1 — T(k)>.

T

Then,
lim Qw"|Dn:1,X":w(T;£k)) - an|Dn:1,Xn:£(7—g§k))i| = y(l,x). (13)

k—4o00

Hence, y(1, x) is identified (up to the location normalization at T).

The proof of this result proceeds in three steps. First, under Assumptions (ii)—(iii), the right tail
of the selected wage distribution—observed in the data—is asymptotically proportional to the right

tail of the potential wage distribution—unobserved in the data. Namely, for each realisation z of X,,
Pr(w, >w | D,=1,X,=2) ~ ¢(l,2) Pr(w,(1) > w | X, = z) (w— 400), (14)

with ¢(1,2) = ¢1/Pr(D, = 1 | X,, = z) € (0,00). Intuitively, selection only multiplies the
far-right tail of the potential wage distribution by the constant ¢(1, z).
Second, Assumption (iv) lets us invert (14) on the tail. The result is the following relation be-

tween the selected quantile and the potential quantile:

Qun | Prmt Xame(7) = Quu xame 1 = 55 +0x(1- 7)), T2 1, (15)

where the remainder satisfies 0,(1 — 7)/(1 —7) — 0 as 7 — 1. By Assumption (i) and the

decomposition wy, (1) = y(1, ) + €,(1), Qu,1)| xn=2(®) = y(1,2) + Qc,1) (), so (I5) becomes

Quy, | Dp=1,%,=2(7) = y(L, ) + Qen(l)(l — C%;;) + o0.(1 — 7‘)), T — 1. (16)
Third, we apply (16) twice: first at (x,7,) and then at (Z, 77 ), where the levels 7,7 — 1 are
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chosen so that the inner indices match,

1— =1- 17
c(1,z) c(1,7) {17
In particular, one convenient choice that guarantees isl—m, = 28;; (1 — 7z). Using and
the normalization y(1, Z) = 0 from Assumption (v), we obtain
an\Dn:I,Xn:r(Tx> = y(la x) + Qen(1)<u + 0:1:(1 - Tz)) Ty — 17
an\Dnzl,anat«(T:?:) =0 + Qen(l)<u + 0:2(1 - 7':?:)) Tz — 1.
Subtracting the second display from the first yields
an|Dn:1,Xn::v(7—x) - an|Dn:1,Xn=:f(7—:i) = ?J(L 33) + Qen(l)(u + Ox<1 - Tx)) g
(18)

— Qen(1)<u + 05;(1 — Ti‘)) 7—$,7—j — 1

Since 0,(1 —7,), 0z(1 —7z) — 0 and Q1) is continuous near 1 by Assumption (iv), the difference
of the two error—quantile terms in (I8]) vanishes as 7,,, 7z — 1. Hence the left-hand side converges
to y(1, z). In summary, the proof hinges on two ideas: (a) selection preserves the rate of tail decay
up to a constant, and (b) by working with quantiles and carefully reindexing the tail probability, we
can subtract out the shock and recover the deterministic component y(1, x).

To clarify Assumptions (i)—(v) in Proposition [3} Assumption (i) is the standard exogeneity con-
dition in Roy models. Assumption (ii) requires that both the potential wages w,, (1) | X,, = = and the
observed, selected wages w,, | (D, = 1, X,, = x) have unbounded right support. This requirement
is not essential: a bounded-right-endpoint analogue tracks convergence to the finite right endpoint—
rather than to +-oo—with only minor modifications. In particular, exactly one of the following cases
obtains: (a) w(z) = weps(z) = +00; (b) W(x) = Weps(T) < +00; (€) Wops(T) < w(x) < +ooE] Case
(a) is the setting covered by Proposition [3] Under (b), Proposition [3] and its proof go through with
minimal edits—replace limits as w — +oo with limits as w — w(z). Under (c)—where the right
endpoint of the observed, selected wage distribution can differ from (and be finite relative to) that
of the potential wage distribution, so selection affects not only the distributional shape but also the
support of observed wages—the identification result retains the spirit of Proposition 3] but extra care
is needed in taking limits because the two endpoints differ. In Appendix we treat case (c) and
further show that, when finite, the right and left endpoints of the potential wages w,(1) | X,, = z

and shock €,(1) can be nonparametrically identified. Assumption (ii) also requires that, for every

'We ignore wops () > w(z) as supp(wy,| Dy, = 1, X, = 2) Csupp(w,(1)| X, = x) implies wops() < w(x).
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realisation z of X, the probability of choosing job 1 is strictly positive, Pr(D, =1 | X,, = z) > 0.
This is only for expositional simplicity: the framework also allows Pr(D,, = 1 | X,, = z) = 0 for
some x, in which case y(1, ) is not identified at those z.

Assumption (iii) imposes a common tail-selection limit ¢; € (0, 1], independent of z, for Pr(D,, =
1| X, =z wy(l) > w)as w — 4o00. Existence and positivity of this limit imply that the right
tail of the selected wages, Pr(w, > w | D, = 1, X,, = z), and the right tail of the potential wages,
Pr(w,(1) > w | X,, = x), are asymptotically proportional as w — +oo (equation (14))). Invari-
ance of the limit across x—that is, when the potential wage for job 1 is very large, the effect of X,
on the probability of selecting job 1 becomes negligible—ensures that the indices {ngk)}k21 in the

identification claim (20) can be computed from the data without knowing ¢;. Specifically,

c(1,z)
(1,7)

For a micro-foundation of Assumption (iii), see Lemma(I]in Appendix [B.I] which reproduces Corol-

Pr(
Pr(

1-— ngk) = (1 — Ték)) = ) (1 — Ték)).

ala

o
&
Il

D,=1|X,
D,=1]X,

lary 4.1 in D’ Haultfoeuille and Maurel (2013)).

Assumption (iv) is a tail-regularity condition: continuity and strict monotonicity of the relevant
CDFs on far-right intervals ensure a one-to-one mapping between tail probabilities and quantiles,
which justifies the quantile reindexing step of the proof (equation (13)). This condition is satisfied
by many parametric families, including both thin-tailed and fat-tailed distributions. Finally, Assump-
tion (v) is a location normalisation: as in standard Roy models, wages are identified only up to an
additive constant. Fixing y(1, z) = 0 pins down the wage level in our setting. Alternatively, the error
term can be normalised to have zero unconditional mean or median (French and Taber, 201 1)

To complete the argument, we now consider the unconditional joint distribution of the vector
of shocks €, = (e,(1),€,(0)). A well-known negative result by Tsiatis (1975) shows that, in
competing-risks models without covariates, the joint distribution of the latent risks is not identified.
By contrast,[Heckman and Honor¢ (1989) establish that under sufficiently rich covariate variation—
specifically, with at least as many continuous covariates as there are causes of failure among other
conditions—the joint distribution can be identified nonparametrically. Translated to the Roy setting
studied here, this implies that without at least as many continuous covariates as there are jobs, one

cannot nonparametrically identify the joint distribution of ¢,,. Standard matched employer—employee

12Gee also D’Haultfoeuille and Maurel| (2013, who identify the deterministic wage component in a static Roy model
without exclusion restrictions by exploiting the extreme tails of the shock distribution. Our Assumption (iii) corresponds
to their Assumption 3. Whereas they work under a thin-tailed assumption (their Assumption 2), we extend the argument
to allow wage (and log-wage) distributions with fat tails, which is important for plausibly modeling the U.S. wage
distribution.
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data, for instance, the LEHD for the United States, typically record worker attributes in coarse, dis-
crete categories such as education and intervals or occupation codes. Moreover, in our dynamic
framework, a state variable that can be treated as approximately continuous may exist, the belief
P, :, but, as discussed earlier, it is a single probability distribution over a worker’s general ability.
Consequently, the requisite continuous variation per alternative is absent, rendering the Heckman
and Honor¢ (1989) strategy infeasible in our setting. In view of this, we proceed by focusing on the
marginal distributions of €,,(1) and €,,(0). To recover their joint distribution, we either add an explicit
independence assumption, impose a parametric copula, or work with Fréchet—-Ho6ffding bounds for
partial identiﬁcationE]

Regarding the marginal shock distributions, we have seen above that, under the assumptions of
Proposition [3] in the far-right tail the survival function of the observed (selected) wages is asymp-
totically proportional to the survival function of the corresponding potential wages (equation (14))).
Intuitively, selection stops “tilting” the tail and only rescales it by a constant. Because this rescaling
cancels when we take ratios of tail probabilities (or differences of high quantiles), the proposition
lets us nonparametrically recover the shape of each shock’s extreme right tail: how fast tail prob-
abilities decay, how heavy the tail is, high-quantile growth rates, and extreme support points when
finite. What this does not deliver is the full marginal distribution: the proposition yields asymptotic
tail information but leaves the interior unrestricted. If, however, one specifies a parametric family
for €,(1) and €,(0), the same tail-ratio argument produces a finite system whose solution identifies

the parameter vectors governing the two marginalsEf]

Corollary 1 (Identification of the Shock Distribution). Let Assumptions (i) to (v) of Proposition
hold for each d € {0, 1} so that y(d, x) is identified for each d € {0, 1} and realisation x of X,,.

(a) (Marginal Identification.) Assume €, (1) belongs to a known parametric family indexed by the

p1 X 1 vector or parameters j1; € M; C RP'. Fix any realisation x of X,, and choose p,+1

13 Assuming independence between the shocks €, (1) and €, (0) in the static Roy model () can be restrictive, because
these shocks are the sole source of unobserved heterogeneity and may, in principle, embody substantial correlation across
potential wages. By contrast, in our broader class of dynamic models this assumption is less consequential: structural
correlation across potential wages is captured by latent state variables—e,, and P,, ;—so the productivity shocks can be
treated as residual errors.

4“Unlike in dynamic discrete choice models, where the parameters governing the distribution of idiosyncratic shocks
are typically not point identified, here we can obtain point identification of these parameters by exploiting the additional
information provided by the wage distribution.
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distinct large thresholds 0 < wy < wy < -+ - < wp,. Define the function

Senny(w1 —y(1,2); p11) Se,y(wp, —y(1, z); m))
) S b)

)
Dy, My —> R Dy, =
te : My talih) (smm(wo—y(l,x);m) ot (0 — (L) )

where S, 1) denotes the survival function of €,(1). If ®1 , is injective, then the parameter |1,

is identified. An analogous statement holds for €,(0).

(b) (Joint Identification.) Let F,, denote the joint CDF of €, and F (- jt1), Fe,0)(; o) the
identified marginal CDF's from part (a).

* Independence. If €,(1) and €, (0) are mutually independent, then
Fe,(vi,v0) = Fen(1)(1)1; 1) Fen(o)(vo; to) Y (v1,v0) € R?.
* Parametric copula. If a copula C,, is specified so that

F. (vi,00) = CuFe,y(vi; 1), Fe,0)(vo; o))V (v1,00) € R?,

and the copula parameter | is known, then I, is identified.

* No dependence restrictions (partial identification). Absent further restrictions on the
dependence between ¢, (1) and €,(0), the joint CDF is partially identified by the sharp
Fréchet—Hoffding bounds:

maX{Fen@)(m;ul)+Fen(o)(vo;uo) -1, 0} < F (v,v0) <

miﬂ{anu)(m;Ml), Fen(O)(UO;MO)} V (v1,v0) € R

In Appendix [D] which contains the proof of Corollary I} we provide examples of common para-

metric families that satisfy the injectivity condition in (a), including both thin-tailed and heavy-tailed

distributions.

We conclude by noting that the quantile approach in Proposition [3|extends to wage specifications
in which the shock €,(1) is multiplied by a scale function o(1, X,,); see Proposition [13| in Ap-
pendix [B.4l This covers, for example, equilibrium wage equations arising in search models, where
conditional heteroskedasticity is an inherent feature (Bagger et al., 2014); see Appendix [C] for the
extension of our identification arguments to search models. More broadly, our quantile approach

does not rely on the exact mechanism that generates job choices D, ; in the class of models we study
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and can accommodate arbitrary dependence between those choices and the unobserved shocks e, ;.
It is therefore quite general and applies to any class of models that produces a wage equation with a

structure resembling equation @])EE
3.2 Our Identification Approach

Here we re-sketch our identification strategy, organised by the classes of primitives of interest and

building on the review in Section[3.1] The full, formal arguments appear in Section 4]

Information Technology, Deterministic Wage Component, and Shock Distribution. Return to
the general wage equation (). To adapt Proposition [3|to our setting for identifying the deterministic
wage component ¢(-) = y(-) + ¥(-), we must first know the distribution of w,,; conditional on
(Dpt, Snt). The sampling process does not reveal this distribution directly because P, ; and e,, are
unobserved. Consequently, we must identify it. We proceed in three steps. First, we express the dis-
tribution of w,,; conditional on (H,, 1, D! )—which is observed under Assumption as a mixture
over worker n’s efficiency e,, and signal history afjl = (@n1,- -, ane—1). Using existing results on
the identification of mixture models—in particular, the assumption that the wage distribution admits
a generalised finite mixture representation (a finite mixture whose components are (potentially con-
tinuous) Gaussian mixtures)—we identify the mixture weights and components of the wage mixture
(Proposition [4)).

Second, by concatenating the mixture weights across periods, we identify the signal distribution
conditional on the latent ability #,, and the prior belief function. In turn, we recover the posterior
belief in each period by recursively computing it from (3) (Proposition 3)).

Third, given the identification of the learning process and the fact that, in the model, the vector
of state variables s,, ; is a deterministic function of (H,, 1, D!, e, al™!), it follows that we identify
the distribution of w,, ; conditional on (D,, ;, s,,+) (Proposition @)

Having recovered the distribution of w,,; given (D,,;, s, ), we adapt the quantile argument of
Proposition [3 to identify the deterministic wage component ¢(-) = y(-) + ¥(-) (Proposition [10).

Lastly, once this deterministic wage component is recovered, we identify the unconditional distribu-

15Some papers not discussed in our (incomplete) literature overview of the Roy model show that the deterministic
component of wages can be identified without exclusion restrictions and at-infinity arguments, provided we observe at
least as many continuous worker attributes as there are job alternatives. See, for instance, |[Lee and Lewbel (2013) and
Kim and Lee|(2025). However, as already mentioned, standard employer-employee match datasets, such as the LEHD
dataset, do not contain continuous worker attributes.

160ur overview has focused on the static Roy model. Dynamic extensions of these arguments in the literature often
rely on additional simplifying assumptions, such as directional and irreversible choices and the presence of absorbing
states. For instance, in the schooling context studied by [Taber (2000), students acquire one degree at a time; once a
degree is earned, it cannot be revoked, and withdrawing from a degree program effectively precludes reentry. None of
these restrictions applies to our framework, nor are they required for our identification arguments.
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tion of the vector of productivity shocks e, by adapting Corollary [T| (Corollary [).

Law of Motion of the State and CCPs. The wage mixture weights not only help us identify the
deterministic wage component ¢(-) := y(-) + W(-) but are also key to identifying other objects of
interest, such as the law of motion of the state variables, Pr(s,; | Dpt—1, Snt—1), and the CCPs,

Pr(Dyy | $n:) (Propositions [7] and[8). Intuitively, recall that the mixture weights essentially deter-

t—1
n

mine the distribution of (H,, 1, Di7!, e,,al"!) in each period, which in turn governs the state vari-
ables s,,; and subsequently the occupation choices. Thus, by appropriately combining these weights
across periods, it becomes natural to recover the law of motion of s, ; and the CCPs. Notably, in
contrast to the typical method of recovering CCPs from agents’ discrete choices in dynamic models,

here the CCPs are identified from the continuous part of the data, that is, the wage distribution.

Output (and Human-Capital) Technology and Compensating Differential. Beyond identifying
the deterministic wage component ¢(-) = y(-)+¥(-), we further separate within ¢(-) the output (and
human-capital) technology y(-) from the compensating differential W(-). Specifically, the market-
wide job allocation can be represented as a pseudo-planner (single-agent) dynamic discrete decision
problem. Therefore, given the CCPs and the distribution of productivity shocks, y(+) is identified by
standard arguments for dynamic discrete choice models (for instance, Magnac and Thesmar, 2002;
see Proposition [11)). With y(-) in hand, ¥(-) follows residually from ¢(-) (Corollary [5| Part I).
Similarly, once y(-) is known, we can net out the deterministic labor-input component ¢(-), thereby

completing the recovery of the output (human-capital) technology (Corollary [5] Part II).

4 Formal Identification Argument

We now formally illustrate the identification approach previewed in Section

4.1 Relevant Market

Our overview in Section [3| has been silent on the role played by the second-best firm D’ ., which

n,t
appears in the wage equation and remains unobserved under Assumption [l This was intentional:
we wanted the reader to focus on other, more pressing identification challenges that arise in our
framework. With the standard data assumed under Assumption [I] and in the absence of further
restrictions on the model, D}, , is not identified, as is well understood in the literature. This paper does

not provide new results on that front. In this section, we therefore introduce a standard assumption

that allows us to sidestep this non-identification problem and proceed with the analysis.

Assumption 2 (Relevant Market).(i) In each period ¢, conditional on the worker’s state s,, ;, the set

of firms making offers—worker n’s “relevant market” or “choice set”—depends only on s,, ; and not
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on €, , and has size 2. We denote this relevant market by D;(s,, ;) C D, with |D;(s,,+)| = 2. (ii) The

correspondence s,, ¢ — Dy(s,,:) is known to the econometrician. o

Assumption [2(i) requires that, in each period ¢, the set of firms offering a job to worker n (worker
n’s “relevant market” or “choice set”) is a function of s,, ; only and contains exactly two firms. Limit-
ing offers to a small number of firms is realistic in many labor markets. Restricting this set to depend
only on s, ; and to contain exactly two offers is technically helpful: conditional on the first-best firm
D,,; and the state s, ;, the second-best firm D), , entering the wage equation (8)) is already implicitly
conditioned on and need not be modelled as an additional stochastic index. Therefore, the distribu-
tion of w,,; conditional on (D, , s,,+) is fully determined by the distribution of ¢, ; conditional on
(Dp.t, Snt), which is used in the arguments below.

Assumption ii) requires that the correspondence from s,, ; to worker n’s choice set D;(s,, ;) be
known to the econometrician. Combined with Assumption 2(i), this implies that, conditional on the
first-best firm D, ; and the state s,,;, the second-best firm D}, ; is not only already implicitly condi-
tioned on but also known to the researcher. While Assumption [2[(ii) is not required to identify the
information technology, law of motion of the state, and CCPs, we exploit it to identify components
of the wage equation that are indexed by both the first- and second-best firm, namely ¢(+), y(-), and
U(-), in order to avoid any labelling indeterminacy. We will be explicit about when and how each
part of Assumption [2]is used.

This two-firm, known choice-set assumption is standard in the empirical labor literature and

preserves the familiar incumbent-poacher structure of search models.
4.2 Wage Mixture

In this section, we represent the cross-sectional wage distribution at time ¢, conditional on worker n’s

observed initial human capital H,, ; and occupational history Dt = (Dns- .-y Dyy), as a mixture

over latent classes indexed by the efficiency type e,, and by the history of noisy performance signals
t—1

a = (@n1,-..,0,,-1) about 6,. Specifically, by the law of total probability, the conditional

n

distribution of wages w,, ; can be expressed as the following mixture:

Pr(wn,t <w | Hpyg, Dfl) = Z Pr(wn,t <w | Hya, Dfl, e, =e, al = atfl)
(e,at—1)eEx At—1 (19)

x Pr(e, =€, a; ' =a"" | Hy1, D)),
1

where the sets &, A, and A'~! denote the (unconditional) finite supports of e, a, ;, and af; , respec-

tively; e and a'~! denote generic realisations of e,, and a’; !, respectively, with a’~! := (ay, ..., a;1);
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Pr(wmt <w| Hy1,Dl e, =eat = atfl) corresponds to a mixture component; and Pr(en =

e,alt = a'! | H,1, DY) corresponds to the associated mixture weight. In what follows, we show
identification of these mixture components and weights.

Before presenting the assumptions and results, we introduce some useful notation. Because of
Assumption i), not all realisations of the observables (H,, 1, D!,) in H x D' need occur with strictly
positive probability. We henceforth denote by HST C H x D! the set of realisations (h, d") of
(H, 1, D%) such that Pr(H, ; = h, D!, = d*) > 0, with d" :== (dy, ..., d;). Similarly, conditional on
(H,.1, D'), not all realisations of the unobservables (e,,,a’, ) in & x A"~ need occur with strictly
positive probability. We henceforth denote by ﬁi‘ifdt C &€ x A"! the set of realisations (e,a’"!) of
(e, al ") such that Pr(e, =€, a, ' =a'' | H,y = h, D, =d') > 0. Assumptionsets out the

n

conditions used to identify the mixture components and weights in equation (I9).
Assumption 3 (Generalised Finite Mixture).For each ¢ > 1 and (h, d"™!, d) € HH, assume:

(i) (Mixture of Normals.) For each & x A'""! and conditional on (H,,; = h, D! = d' e, =
e, a7’ = a''), the productivity shock of the second-best firm D}, , = d; € D, €,,(d}, e),
is distributed as a mixture of a, possibly uncountable, family of Gaussian distributions. For-
mally, let fy (- | Hyy = h, D}, = d',e, = e,al;' = a'") denote the density of e, (d}, ¢)

conditional on (H,,; = h, D!, = d', e, = e,al; ! = a'~'). Then, for each r € R,

n

fd;’e(r | Hn,l - h’ sz = dt7 €n =6, atil = atil)

n

:/ N (r; p, o®)dr(p, 0% b, d e, a' ™),
(u’g2)€gh,dt,e,at71

where N (-; 1, 0?) is the Gaussian density with mean p and variance 0%; G, ge o qt-1 C R X
(0,00) is the (possibly unknown) support of the Gaussian parameters (y, 0?) conditional on
(Hoy = h, Dl = d'e, = e,al7! = a'™'); and 7(-;h,d',e,a’™") is a Borel probability
measure on Gy, 4t . .+-1, representing the distribution of (4, 0%) conditional on (H,,; = h, D!, =

=1 — gt=1),

d',e,=e,a
(ii) (Supports.) The supports &£ of e,, and A of a,, ; are known finite sets.

(iii) (Compactness.) For each (e,a'™') € & x A", the set Gj, gt qt—1 iS a compact subset of
Jdb e, p

R x (0,00).
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(iv) (Continuity and Measurability.) For each (e, a'™!) € £ x A'"!, the map
(1, 0%) = N (r; 1, 0%)
is continuous on Gy, 4t . ,+—1 for every r € R, and the map
(r,p,0%) = N (r; 1, 0%)

is Borel-measurable on R x R x (0, 00).

(V) (Non-Overlap.) There exists a Borel subset G, gt ¢ at-1 € Gpateqt-1 C R X (0,00) such
that (G, gt cat—15 b, d',e,a’™1) = 1 for each (e,a’"!) € L‘;'Lffdt. Moreover, G, gt qt-1 N

Gharea— = 0 foreach (e,a’ ") # (&,a' ") with (e,a'™1), (6,0 ") € L§.

Proposition {] formalises the identification result under Assumption 3]

Proposition 4 (Wage Mixture). Let Assumptions|[1} i), and[3|hold. Then, for each 1 <t < T and
(h,d") € H:

(i) The probability Pr(e, = e, a' = a'™' | H,1 = h, D! = d') is identified for each

(e,a'™) € &€ x AL

(ii) The probability Pr(wm <w|H,y=h, D =d' e, =¢, a;' = at_l) is identified for

each (e,a'™1) € E% and w € R.
(iii) The set L, C & x A1 is identified.

Assumption [3(i) imposes that, conditional on (H,; = h, D}, = d', e, = e, al! = a'™'), the
productivity shock of the second-best firm d; at time ¢, €,, ;(d}, €), is distributed as a mixture of a (pos-
sibly uncountable) family of Gaussian distributions. Combined with Assumptions [2(i) and [3[ii), this
implies that the wage mixture in equation 1s a finite mixture whose components are (possibly un-
countable) Gaussian mixturesE] To see why, recall our wage equation (8]) and that, in the model, the

state vector s,,; == (H,, 1, ks, Pot, €n) is a deterministic function of (H,, 1, D1, e,,, al!). Hence,

by conditioning each mixture component in (I9) on (H,, 1, D!, e,,a’ "), we implicitly condition

17We remark that the wage mixture in equation (T9) is not assumed to be a finite mixture of Gaussians.
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on the state s, entering as well. In turn, under Assumption [2(i), this also entails implic-
itly conditioning on the second-best firm D, , entering (8). Therefore, each mixture component
Pr(w,; < w | Hyy = h, D, = d', e, = e, al7' = a'"') in (19) is fully determined by the

distribution of the productivity shock of the second-best firm D], , = d; € D at time ¢, €, (d;, e),

conditional on (H,; = h, D!, = d', e, =e, a;' = a''). By Assumption [3[i), this distribution

n

is a mixture of a (possibly uncountable) family of Gaussian distributions, and since ¢,, and a’~! can

take only finitely many values under Assumption [3{ii), it follows that the distribution of w,,; con-
ditional on (H,; = h, D! = d') is a finite mixture whose components are (possibly uncountable)
Gaussian mixtures.

We call a distribution admitting a finite mixture representation whose components are (possibly
uncountable) Gaussian mixtures a generalised finite mixture. Such two-layer mixture models are
known to approximate any distribution arbitrarily well (Nguyen and McLachlan,|[2019). This class is
therefore well suited to model general distributions that need not follow a standard parametric form.
This generality is particularly important in our setting, where, as explained above, each mixture

component in (19) is fully determined by the distribution of the productivity shock of the second-

t—

=1 = ¢'~1) and, therefore, is

best firm, €, ,(d}, ), conditional on (H,,; = h, D!, = d', e, = ¢, a
“contaminated” by workers selecting jobs based on the unobserved vector of shocks ¢,, ;. We should
not expect this conditional distribution to coincide with the unconditional distribution of €, ;(d}, e)
(that 1s, the family need not be closed under conditioning), nor to have a “standard” parametric form
such as Normal or GumbelEg] Instead, this conditional distribution is endogenously determined by
how workers and firms make decisions within the model. Therefore, we must rely on assumptions
that allow for very flexible distributions, as Assumption [3|i) does.

Assumption ii) posits that efficiency e,, and signal a’, ! have finite unconditional supports, £
and A'~!, with known cardinalities. Proposition @iii) identifies the conditional support of these
random objects, namely the subset Ez{fdt C & x A", In Appendix , we discuss how to relax this
assumption and allow e,, and a,, ; to be continuous multidimensional random vectors.

Assumptions [3{iii) and (iv) are regularity conditions requiring that all Gaussian means and vari-

ances (u, o) that can arise lie in a bounded rectangle, with variances bounded away from 0 and oo,

and that all Gaussian densities involved vary continuously with (, 02), with the kernels measurable

8By “closure under conditioning” we mean that, if a random vector e follows a given parametric family Fp, then
for any selection event A defined in terms of ¢, the conditional distribution € | A still belongs to the same family, i.e.
€ | A ~ Fp for some ¢'. This is a very strong requirement and is satisfied only by a few special families, such as i.i.d.
type-I extreme value (Gumbel) shocks in multinomial logit models.
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in all their arguments.

Lastly, Assumption[3(v) is a standard separation condition in the identification of mixture models
and requires that the mixing distributions {7 (-; h,d", e,a’™") : (e,a'") € L5, } place all their mass
on pairwise disjoint sets G, gt ¢ ot-1 C Gp gt e ot—1 0 the (g, o?)-space. Otherwise, they could not be
separately distinguished. Importantly, it does not require the densities { fy (7 | Hn1 = h, D}, =
d' e, = e,al,t =a"""): (e,a"") € L5}, and so the wage mixture components, to have disjoint
supports, and instead allows them to overlap arbitrarily.

We establish Proposition 4] as a straightforward application of Bruni and Koch| (1985)). Specifi-
cally, the wage mixture (19) corresponds to the mixture model discussed in Section 4.c of Bruni and
Koch| (1985)) and is shown to be identified under Assumptions|I} 2|i), and 3]

As an alternative to the approach set out by Assumption [3|and Proposition 4] we have examined
the applicability of two identification strategies in the mixture-model literature. The first approach
uses exclusion restrictions, that is, variables that enter either the mixture weights or the mixture com-
ponents, but not both (Henry et al., [2014; Compiani and Kitamura, [2016; Jochmans et al., [2017).
The second approach considers the joint distribution of the entire vector of wages (w1, ..., w,r),
rather than focusing on the cross-sectional wage distribution at each time ¢ as in (19)), and relies on
assumptions that simplify the temporal dependence of wages, such as conditional independence or
Markovianity, together with a constant number of latent classes over time (Hall and Zhou, 2003
Allman et al., 2009; Kasahara and Shimotsu, 2009; Bonhomme et al., 2016alb). Neither approach is
suitable for our framework. In the class of models we consider, exclusion restrictions do not arise:
any variable that affects the conditional distribution of efficiency types and signals also affects the
conditional distribution of wages, and vice versa. Moreover, wage observations are neither condi-
tionally independent over time nor Markovian, and the number of latent classes over which we mix
increases with ¢ because of the growing dimension of the vector of performance signals a’~'. More
broadly, human capital accumulation and learning imply that there is no sufficiently time-invariant
structure for the wage time series to be useful for identification. Given these considerations, we view
the approach set out by Assumption [3]and Proposition 4 as the best compromise between generality
and the key features of class of models we study.

Despite the extreme flexibility of the class of mixtures embraced by Assumption [3| Proposition
M] can also be extended to fully nonparametric mixture families. In particular, [Aragam et al.| (2020)
propose a criterion known as the “clusterability” condition, which is sufficient for identification.

Intuitively, this condition essentially requires that the mixture components are “sufficiently distinct,”
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as quantified by an appropriate distance measure—a notion that can already be found in [Teicher
(1961, [1963))’s earlier discussion of mixture identifiability. Not only is this condition met in the
setting described by Bruni and Koch| (1985)), but it applies to a wide range of other mixtures.

Finite mixture models can only be identified up to the labeling of their components because the
likelihood is invariant to permutation of the components. In our setting, we can resolve the labeling
indeterminacy by examining the moments of the mixture components, for example, by using their
variances to order them with respect to e,, and their means to order them with respect to a’; .

Lastly, as an immediate implication of Proposition 4] we identify the joint distribution of histories
of signals by combining the wage mixture weights across periods. We report below the identification

of two specifications of signal histories that will be useful for the arguments that follow.
Corollary 2 (Signal Distribution). Assume:

(i) Assumption[l|holds.

(ii) The wage mixture weights in (19) are identified at times t and t + 1, with t € {1,...,T — 1}.

See Proposition 4| for sufficient conditions.

Then, the conditional signal distribution
Pr(a, =a' | H,y =h, D!, =d', e, =¢),
is identified for each (a', h,d',e) € A" x H x D' x & such that Pr(H,; = h, D, = d') > 0 and
Pr(en =e|H,y=h, D, = dt) > 0, where a' == (ay,...,a;) and d' == (dy, ..., dy).
Corollary 3 (Signal Distribution and Job Retention). Assume:
(i) Assumption[l|holds.

(ii) The wage mixture weights in (19)) are identified at times t+2 and t+3, witht € {1,...,T—3}.

See Proposition 4| for sufficient conditions.

Then, the conditional distribution of three consecutive signals at job d,
Pr(am = Qt, Apgt4+1 = Ap41, An42 = Ap42 | Hn71 = h, Dn,t =d, Dn7t+1 =d, Dn,t+2 =d, e, = 6),

is identified for each (a;,as 1, as42,h,d,e) € A> x H x D x € such that Pr(Hn,l =h, D,y =
d, Dpyps = d, Dyper =d) >0, and Pr(e, = ¢ | Hyy = h, Dyy = d, Dyypr = d, Dyppr =
d) > 0.
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4.3 Information Technology

In this section, we use the wage mixture weights in (I9), identified by Proposition 4] to recover each
firm’s information technology, that is, the prior and posterior beliefs generated under any sequences
of jobs and signals. To this end, we first introduce an assumption that disciplines the distribution of

signals conditional on the latent ability 6,,.
Assumption 4 (Signal Distribution Conditional on Ability). (i) A = {a@,a} and © := {0, 6}.

(ii) Signals are conditionally independent over time. That is, for each ¢ € {1,...,7 — k} and

integer k£ > 0,

t+k
Pr(ang, - Gngrk | Hots Dugs - - Dok €, 0n) = [ [ Pr(an | Hua, Doy en, ).

j=t

(iii) The distribution of a,,; conditional on (H,, 1, Dy, 1, €, 0,,) is time-invariant, with
a(h,d,e) = Pr(anvt =a|H,1=h, Dyy=d, e, =¢e, 0, = 9_),

6(h7d7 6) = Pr(an,t =a | Hn,l = h, Dn,t - d7 €n =6, en - Q)a

for each (h,d,e) € H x D x &, and a(h,d,e) > B(h,d, e).

Proposition [5|formalises the identification result under Assumption 4
Proposition 5 (Information Technology). Suppose that:
(i) Assumption[d hold.

(ii) Let (h,d,e) € H X D x E. Forsomet € {1,...,T — 3}, the conditional distribution of three

consecutive signals at job d,
Pr(an,t = Q¢, Apt+1 = At41, An 42 = A2 | Hn,l = h7 Dn,t = d7 Dn,t+1 = d, Dn,t+2 = d» €n = 6),

is identified for each (a;, asy1, ar12) € A3, and the conditional distribution of the initial signal
at job d,
Pr(a,1 =a| Hyy =h, D,y =d, e, =e)
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is identified for each a € A. Condition (ii) is required to hold for each (h,d,e) € H X D x €&,
possibly with t varying across (h,d, e). See Corollaries and for sufficient conditions.

Then, a(h,d,e), B(h,d, ), the prior belief Pr(0,, = 0 | H,1 = h, e, = ¢), and the set of realiza-
tions of the posterior beliefs { P, ,}1_, are identified for each (h,d,e) € H x D x &.

Assumption (i) imposes that the signal a,,, and the latent ability 6,, have finite supports. We
already adopted this assumption in Section [2]to simplify the description of the learning process; see,
for instance, equation (3). It is therefore convenient to maintain it when identifying this learning
process. In Appendix [A] we discuss how this assumption can be relaxed to allow for continuous
and multidimensional a,,; and 6,,. Assumption [4{(ii) imposes that signals are independent over time
conditional on the history of jobs and 6,,, while Assumption [(iii) requires that the distribution of
an,; conditional on the chosen job and 6, is time-invariant and described by the parameters a(h, d, e)
and ((h,d,e). This is a standard requirement for identifying the information technology: if that
distribution varied over time, we could not recover belief dynamics solely from observing workers
switching jobs. Assumption [4{iii) also imposes a(h, d, e) > 8(h, d, €), which is a natural restriction
since high-ability types are more likely to generate high signals.

In addition to Assumption [ Proposition [5] also builds on Corollaries [2] and [3] In particular,
condition (ii) of Proposition [5|requires the identification of the conditional distribution of three con-
secutive signals at job d to be identified, for which sufficient conditions are provided by Corollary 2]
and of the conditional distribution of the initial signal at job d, for which sufficient conditions are pro-
vided by Corollary [3] These sufficient conditions essentially amount to the identification of certain
wage mixture weights in (19). See the remark at the end of the proof of Proposition [5|in Appendix
for a clarification of these sufficient conditions.

The proof of Proposition [5 is straightforward and makes clear where each restriction is used.
Under Assumption A we can represent the identified (under condition (ii) of Proposition [3]) dis-
tribution Pr (anﬁt = a, Qnit+1 = Qey1, Qppro = Qio | Hpy = hy Dpy = d, Dy =
d, Dpiio = d, €, = e) as a binomial mixture over 6,, with two components, characterized by
a(h,d,e) and S(h,d, e), and three trials. The components of this mixture can therefore be identified
using the results in |Blischke| (1964 1978) for binomial mixtures. This explains why condition (ii)
of Proposition [5] requires observing workers employed at job d for three consecutive periods: by
Blischke| (1964, |1978), at least three trials are needed to identify two binomial mixture compo-

nents. Still using Assumption f] we can represent the identified (under condition (ii) of Proposi-
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tion distribution Pr(a,; = a | H,1 = h, D,; = d, e, = e) as a Bernoulli mixture over 6,
with two components, again characterized by «(h,d,e) and 5(h,d,e), and with mixture weights
Pr(, = 0 | H,y = h,e, = ¢)and 1 — Pr(, = 0 | H,, = h,e, = e). Since a(h,d,e) and
B(h,d, e) are already identified, we can readily identify Pr(6,, = 6 | H,1 = h,e, = ¢). In turn,
the set of realizations of the posterior beliefs { Pm}t:2 is identified, since each P, ; can be computed

recursively as in equation (3)) using a(h, d, ¢), 3(h,d,e), and Pr(6,, =0 | H,1 = h, e, = e).
4.4 Law of Motion of the State and Conditional Choice Probabilities

In this section, we use the wage mixture weights and components in (19), identified by Proposition[4]
together with the information technology identified by Proposition [5] to recover the law of motion
of the state and the CCPs. As no additional assumptions are required, we state the formal results

directly and provide some intuition afterwards.
Proposition 6 (Unconditional Distribution of the State). Lert € {1,...,T}. Suppose that:

(i) Assumption[l|holds.

(ii) The wage mixture weights in (19) are identified at time t. See Proposition || for sufficient

conditions.

(iii) a(h,d,e), B(h,d,e), the prior belief Pr(0,, = 0 | H,, = h, e, = ), and the set of realiza-

tions of the posterior belief P, ; are identified for each (h,d,e) € HxDxE. See Proposition

for sufficient conditions.
Then,

(i) The map from realizations of (H,, 1, D', e, al™ 1) to realizations of s, ; == (Hp1, Knts Pot, €n

is identified. Denote this map by g, that is,

(Hn,lanl ! ; €ny Q@ n )'_>Snt (Hn,lvD; ! enaat 1)a

n

and denote by I, the image of g;.
(ii) The unconditional distribution of s, ; on I; is identified. We denote by S; C I, the set of all
s € I, such that Pr (s, = s) > 0, and hereafter refer to S; as the support of s, ;.

The proof of Proposition [6] is straightforward. Given that the set £ is known under Assump-
tion ii), H, ; is observed, k,; is a known function of ijl, and P, ; is identified by Proposi-

tion [5, we identify the map g; from realisations of (H, 1, D\t e,,al ') to realisations of s,,; =
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(Hn1, gy Poyg, €n). The joint distribution of (H, 1, D5, e,,, a!;") is identified from Proposition[4{i)

n

at time ¢. Given knowledge of this distribution and the map g; from realisations of (H,, 1, D% ! e, al™!)

to realisations of s,, ;, we identify the unconditional distribution of s,,, on S;.
Proposition 7 (Law of Motion of the State). Suppose that:
(i) Assumption[l|holds.

(ii) For t € {2,...,T}, the wage mixture weights in (19) are identified at times t — 1 and t,
together with the state maps, g,—1 and g,, and supports, S;_1 and S,. See Propositions{d|and|6]

for sufficient conditions.

Then, the law of motion of the state,
Pr(sn,t =S | Dn,t—l = d7 Snt—1 = 5)7

is identified for each s € S;, d € D, and 5 € S;—1 such that Pr(Dy, ;1 =d | s,:-1 = §) > 0.
Proposition 8 (Conditional Choice Probabilities). Suppose that:
(i) Assumption[l|holds.

(ii) Fort € {1,...,T}, the wage mixture weights in (19) are identified at times t, together with

the state map, g, and support, S;. See PropositionsHd and 6| for sufficient conditions.

Then, the conditional choice probability,
Pr(Dn: =d | spt =),

is identified for each d € D and s € &;.

Proposition [7| follows directly from combining the wage mixture weights at times ¢ — 1 and ¢,
while Proposition [§] relies on Bayes’ rule and the wage mixture weights at time ¢. Proposition [§]is
particularly interesting because, in contrast to the typical approach of deriving CCPs from agents’
discrete choices in dynamic models, here the CCPs are identified from the continuous part of the

data, namely the wage distribution.
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4.5 Deterministic Wage Component and Productivity Shocks

In this section, we identify the deterministic wage component ¢(-) := y(-)+¥(-) and the distribution
of the productivity-shock vector ¢, ; by extending Proposition [3| and Corollary |1| from the simple
static Roy model to our general class of dynamic models.

Since the deterministic wage component ¢ (-) is indexed by both the first- and second-best firms,
D, and D, ;, the arguments in this section exploit Assumption ii)—which has not been used so
far—in order to identify o(-) without any labelling indeterminacy with respect to the second-best

firm’s identity. In particular, as preliminary ingredients, we recover the distribution of wages w, ;

conditional on (D, ¢, D}, ;, sn,¢) and the distribution of D,, ; conditional on (D, ;, 8y.1).
Proposition 9 (Conditional Wage Distribution and Choice Probabilities). Suppose that:
(i) Assumptions[l|and 2| holds.

(ii) Fort € {1,...,T}, the wage mixture weights and components in (19) at time t are identi-
fied, together with the state map, g;, and support, S;. See Propositions {] and [0] for sufficient

conditions.

Then, the conditional wage distribution
Pr(wpy <w | Dny=d, D), =d, spp = 5),

is identified for each w € R, s € S;, and (d,d’) € D? such that Pr(D,,; = d, D, =d| s =

s) > 0. The conditional choice probability
Pr(D,; =d | Dolm,t =d, Snt = 5),

is identified for each s € S, and (d, d') € D? such that Pr(D;,, = d' | s,; = s) > 0.

t—1
n

Intuitively, the distribution of w, ; conditional on (H,, 1, D%, e,, al" ") is identified from the wage
mixture components in (19) at time ¢. Using this distribution, together with the map g; from real-
isations of (H, 1, Df;l, €n, aﬁl‘l) to realisations of s, ;, we identify the distribution of w,,; condi-
tional on (D,, ¢, s,,+). Furthermore, under Assumption i), conditioning on (D, ¢, s,,+) also implic-

itly conditions on the second-best firm D/, ,, which enters the wage equation (§). Under Assump-

n,t?

tion ii), we know which firm is D], ;. Therefore, we identify the distribution of w,, ; conditional
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on (Dy ¢, Dy, 4, 8n¢). Similarly, the distribution of D,,; conditional on (D, ;, s, ) is identified by
Proposition [§] using the wage mixture components in (19) at time ¢, and Assumption [2

Based on Proposition [9] we can now extend Proposition [3|and Corollary [I] to identify the deter-
ministic wage component ¢(-) == y(-) + ¥(+) and the distribution of the productivity-shock vector
€nt. We begin by introducing notation to formalize the results. Given e € &, recall that s, (e)
denotes the vector s,,; evaluated at e,, = ¢ € £ and €,4(¢) = (€,+(d,e) : d € D). Let Si(e) C S;
denote the support of s,, ;(e), identified by Proposition|[6] Given (d,d’,e) € D* x &,let S,(d, d', ) C
Si(e) be the set of realizations s of s, (e) such that Pr(D,, = d, D},, = d'|sn.(e) = s) > 0,
identified by Proposition[9] Given this notation, we can adapt Assumptions (i) to (v) of Proposition [3]

to our setting.

Assumption 5 (Exogeneity).Lett € {1,..., T} and e € . ¢,,(e) is independent of s, ;(e). o

Assumption 6 (Supports).Lett € {1,..., T}, (d,d') € D*, e € £, and s € S;(d,d', ¢). Then,
inf{w : Pr(w,.(d,d’,e) <w | s,i(e) =s) >0} = —o0,

lnf{w : Pr(w’mt(d7 dl? 6) <w | Dn,t = d7 D;’L,t = dl? Sn,t(e) = S) > O} = —00.

o
Assumption 7 (Tail Limit).Lett € {1,...,T}, (d,d) € D?, e € £, and s € S;(d,d’,e). There
exists an (unknown) constant ¢; 44 . € (0, 1] such that

lim Pr(Dn,t =d, D, =d | spie) =s, wn(d,de) < w) = Qrad e

w——00

Assumption 8 (Tail Regularity).Lett € {1,...,T}, (d,d') € D*, e € £, and s € Sy(d, d’, ¢e). There
exist (unknown) thresholds wq 4 s > —o0 and w;;};;,ﬁ > —oo such that the cumulative distribution
functions F,, ,(d.d.e)|sn(e)=s aNA Fy, ,(d.d'e)|Dn=d,sn.(c)=s are continuous and strictly increasing on

(—00, wq,q,s) and (—oo, w% ,), respectively. o

Assumption 9 (Normalisation).Let ¢t € {1,...,T}, (d,d’) € D?, and e € €. There exists a known
5 € Si(d,d,e) with p(d,d',s) = 0. o

Proposition 10 (Deterministic Wage). Lett € {1,...,T}. Assume:
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(i) The set Si(d,d',e) is identified for each (d,d') € D* and e € E. The conditional probability
Pr(wm <w ‘ Dyy=d, D, =d, spie) = S) is identified for each (d,d') € D? e € &,
and s € S;(d,d', e). See Proposition[dfor sufficient conditions.

(ii) AssumptionsS|to[9 hold.

For (d,d') € D* e € &, and s € S;(d, d , ), define

dt.d,d e
td.d. s) — o € (0, 50).
C( ’ 3) Pr(Dn,t _ d, D’ = d ‘ Sn,t(e) _ S) ( OO)

n

Let {Tg(k)}kzl C (0,1) be any sequence with ¥ 5 1 as k — +oc. Define

t,d,d,s)
1 _ k) — ct,d, d’; s) 1 — 7Ry
Ts c(t,d,d’,E)( )

Then,

. k
kll):[—‘,l:loo Q’lﬂn,t ‘ Dn,t:dvD%,tZd',Sn,t(e):s(Ts(k)) _ an,t ‘ Dn,t=d,D;’t=d',Sn,t(€)=§(7—§( )) i| — QO(d, d/7 S).
(20)

Hence, p(d,d', s) is identified for each (d,d') € D% e € £, and s € S;(d, d , e).

Assumptions [SH9 mirror Assumptions (i) to (v) in Proposition [3| which are stated for the simple
static Roy model; we refer the reader to Section [3;1'], where Proposition @ 1s introduced, for a discus-
sion of the role of each assumption, including a sufficient condition for Assumption [/| that restricts
dependence among the shocks (see Lemma [I|in Appendix [B.T].

There is one minor difference worth highlighting. In Assumptions [0H8] we focus on the left
extreme tails of the wage distributions, unlike the original construction of Proposition [3, which con-
siders the right tails. The proof works symmetrically for left tails. Focusing on the left tails ensures
that the quantity ¢ 44 . remains strictly positive. By contrast, if we let w — +oo (rather than
w — —o0), then Pr(Dyy = d, D}, = d' | spu(e) = s, wny(d,d',e) > w) would go to zero due to
the equilibrium pricing mechanism in our model, which mirrors a second—price auction. Recall that,
in the class of models we study, the equilibrium wage for job d equals the expected output at the sec-
ond-best firm d', y(d', s,.+(€)) + €,.4(d’, €), plus a compensating differential ¥ (d, d’, s,,+(e)). Letting
the wage of job d go to +oo while holding s,, ,(e) fixed would effectively push the second—best firm’s
productivity shock €, +(d’, e)—and hence the expected output and wage that firm d’ could offer—to
~+o00. This would alter the equilibrium ranking of firms, making the former first-best firm d no longer

the best choice for worker n and driving ¢; 4« . to zero. Focusing on left tails avoids this issue.
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Moreover, note that assuming unbounded left support for both the observed selected wages and
the potential wages (Assumption|[6)) is not essential. For example, it is often the case that the observed
selected wages are bounded away from zero in the data. A bounded-left-endpoint analogue proceeds
by tracking convergence to the finite endpoint rather than to —oo, with only minor adjustments.
See the discussion following Proposition [3] and Appendix for details on the bounded case. In
Appendix we further show that, when finite, the right and left endpoints of the potential wages
and shocks can be nonparametrically identified.

Also note that Assumption [9]imposes a location normalisation at one state for each pair of first-
and second-best firms, whereas Assumption (v) in Proposition[3]imposes a normalisation at one state
per firm. As discussed in connection with Proposition |3, wages in Roy-type models are identified
only up to an additive constant, so location normalisations are needed to pin down levels. Given that
potential wages in our class of models are indexed by both the first- and second-best firms, while
in the static Roy model they are indexed only by the first-best firm, it is natural that more location
normalisations are required here.

Lastly, nonparametric identification of the joint distribution of the shock vector €, (e) is not
feasible for the same reason as in the simple static Roy model of Section|3.1; we lack at least as many
continuous state variables as there are jobs (Tsiatis, |1975; Heckman and Honoré, [1989). In view of
this, we focus on recovering the marginal distributions of each ¢, .(d, ) and show that, if €, ;(d, e)
belongs to a parametric family, its governing parameters are identified—by extending Corollary
to our general class of dynamic models. To identify the joint distribution of ¢, (e), we either add
an explicit independence assumption, impose a parametric copula, or work with Fréchet—-Hoffding

bounds for partial identiﬁcation

Corollary 4 (Identification of the Shock Distribution). For eacht > 1, d € D, and e € &, let S,
denote the marginal survival function of €,.(d,e). Let F, denote the joint CDF of €, (e) and Fy.

the marginal CDF of €,,+(d, €). Assume:

19 As noted in Footnote assuming independence between the wage shocks in the static Roy model can be restrictive,
because these shocks are the sole source of unobserved heterogeneity and may, in principle, embody substantial correla-
tion across potential wages. By contrast, in our broader class of dynamic models this assumption is less consequential:
structural correlation across potential wages is captured by latent state variables—e,, and P, ;,—so the productivity
shocks can be treated as residual errors.

2ORestricting €,, +(d, €) to a parametric family does not render the generalised finite-mixture approach we use in Propo-
sition [4{ superfluously general. Even if the unconditional distribution of €, ;(d’, e) is parametrically specified—as pre-
scribed by Corollary the conditional distribution of €,, ¢ (d’, e) given D,, ;—which determines the wage-mixture com-
ponents in Equation (I9)—typically does not belong to the same parametric family. The only common case exhibiting
“closure under conditioning” is i.i.d. Type-I extreme value (Gumbel). However, the i.i.d. Gumbel specification is well
known to be ill-suited for dynamic discrete-choice models, as it implies Independence of Irrelevant Alternatives (ILA)
and leads to unrealistic substitution patterns.
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(i) The set Si(d,d',e) is identified for each (d,d') € D* and e € E. The conditional probability
Pr(wm <w ‘ Dyy=d, D, =d, spie) = S) is identified for each (d,d') € D? e € &,

and s € S;(d,d', e). See Proposition[dfor sufficient conditions.

(ii) Assumptions [5|to[9 hold, implying that ¢(d, d', s) is identified for each (d,d') € D? e € &,
s € §(d,d' e), andt > 1 (Proposition .

(iii) For each d € D and e € &, €,,(d,e) belongs to a known parametric family indexed by the

Dae X 1 vector of parameters g, € My, C RPde

Fixd € Dande € E. Consider some d € D\ {d}, s € Si(d,d,e), andt > 1. Choose pg.+1

distinct large thresholds 0 < wo < wy < - -+ < wy, . Define the function g 5 : My, — RP%e as

Dy (i) = [ Smelwn = 9(dd',5); pac) Sae(Wp,, — ¢(d, d', 5); pae)
Cotllel T Saelwo — o ds)pae) 7 Saelwo — odod 8 pae) )

If Oy 5 is injective, then the parameter (14, is identified. Moreover, if the shocks {€, +(d, €)}aep are
mutually independent across d € D, then the joint distribution of €, ;(e) is identified as the product

of the identified marginals. Alternatively, if a copula C,,_ is specified so that
Fe(Ub cee ;U\D|) = C,ue(Fl,e(Ul; M1,6)7 cee F|D|,e(U\D|§ M|D|,e)) V(Ula e >U|D\) S le,

and the copula parameter L. is known, then the joint distribution is identified from the identified
marginals and C,,.. Without further restrictions on the dependence among {¢€, (d, €) }4ep, the joint
CDF is partially identified by the sharp Fréchet-Hoffding bounds in that for all (vy, . .. ,vip|) € RPI,

max{ 3" Fao(vai ) = (1P| = 1), 0} < Fulvr,...,vpp) < min Fuo(vas pac).
deD

4.6 Output, Human-Capital Technology, and Compensating Differential

Once the deterministic wage component ¢(-) = y(-) + W(+) is identified, the remaining objects to
recover are the output (human-capital) technology y(-) and its deterministic labour-input component
(), together with the compensating differential W(-). We first show how to identify y(-) using
standard arguments for dynamic discrete choice models. Given y(-), the components ¢(-) and U(-)
can then be obtained residually from y(-) and ¢(-), respectively.

We start with the simplest case, in which the model’s equilibrium is efficient. Indeed, under As-

sumption [2[1), the equilibrium can be shown to be efficient. In an efficient equilibrium, job choices
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maximise the expected present discounted value of output. Hence, a worker’s choice of firm solves
a planning problem: a social planner assigns a job to each worker in each period. In other words, the
market-wide equilibrium allocation (matching workers to firms) reduces to a single-agent dynamic
decision problem. It follows that standard identification arguments for dynamic discrete choice mod-
els (for instance, Magnac and Thesmar, 2002) can be applied to identify y(-) from observed job
choices.

To elaborate, let Y(sn,t(e), en’t(e)) denote the expected present discounted value of output pro-
duced by worker n with efficiency e,, = e € £ (equivalently, the expected present discounted social

surplus) at state (s,(€), €,(¢)). Then

Y(sn,t(e),en,t(e)) = max {y(d, sm(e)) + €ent(d, €)

d€Di(sn,t(e))
+ 81 = tngs D) E[Y ($n441(€), ena(€)) | snsle), d] }

By Propositions [7|and (8] the law of motion of s,,;(e), as well as the CCPs, are identified. The joint
distribution F, of the shock vector ¢, (e) is identified by Corollary 4| The exogenous separation rate
n(Knt, d) is nonparametrically identified by the fraction of employed workers at firm d with given
kn,+ Who exit at the end of the period. Therefore, y(d, sn,t(e)) is identified following Magnac and
Thesmar| (2002) under standard normalisations in dynamic discrete choice models.

We now state the formal normalisation conditions and the identification result. Given (d,e) €
D x &, let S;(d,e) C Si(e) be the set of realizations s of s, (e) such that Pr(D,; = d | s,4(e) =
s) > 0, identified by Proposition

Assumption 10 (Normalisation).For each e € £, d € D, and s € |J, S;(d, e), there exists deD
such that s € | J, S;(d, ¢) and y(d, s) = 0. o

Assumption |10| normalises y(-) to zero at one firm for each state. More precisely, to identify
y(d, s) for some d € D and s € | J, Si(e), the worker must be able—at state realisation s—to choose

between d and at least one other firm d with strictly positive probability, and y(cz, s) is set to zero.
Proposition 11 (Output (Human-Capital) Technology). Lett € {1,...,T}. Suppose that:
(i) The law of motion of state, Pr(s,; | Dy ¢—1, Spi—1), and the CCPs, Pr(D,,, | s,.), are identi-

fied for eacht € {1,...,T}. See Propositions E] and @ for sufficient conditions.

(ii) The joint distribution F, of the shock vector €, (e) is identified for each e € E. See Corollary

for sufficient conditions.
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(iii) The discount factor d is known.
(iv) The separation rates {1(i ¢, d) }aep are identified (immediate consequence of Assumption|l).

(v) Assumption[I0holds.
Then, the output (human-capital) technology y(d, s) is identified for each d € D, e € &, s € S;(d, e).

When firms consist of multiple jobs—for example, as in our empirical application where two
firms make wage offers each period and each firm operates multiple jobs—the equilibrium can be
inefficient. Even so, the identification of y(-) proceeds analogously to Proposition Specifically,
the main difference in the multi-job case is that the market-wide equilibrium allocation problem
does not solve the planning problem but instead solves the pseudo-planning problem of maximizing
the match surplus for each firm d € D. In this scenario, the one-period surplus when firm d does
not employ the worker equals the deterministic component of the wage paid by the employing firm.
Since the latter is identified, standard dynamic discrete choice arguments applied to each pseudo-
planning problem can once again be used to establish the identification of y(-). With y(-) known,

then ¢(-) and W(+) can then be obtained residually from y(-) and ¢(-), respectively.
Corollary 5 (Compensating Differential and Deterministic Labor-Input Component). Let t € {1,-
..., T}. Suppose that:
(i) The deterministic wage component ¢(d,d', s) is identified for each (d,d') € D? e € &, and
s € §(d,d',e). See Proposition |10 for sufficient conditions.

(ii) The output (human-capital) technology y(d, s) is identified for each d € D, e € &, and s €
Si(d, e). See Proposition|l 1| for sufficient conditions.

Then, the compensating differential V(d, d', s) is identified for each (d,d') € D? e € &, and s €

Si(d, d’, e). Moreover, under the additional normalisation E(a, +(d, e) | s,:(e)) = 0 foreach d € D,

e € & and s € Si(d,e), the deterministic labour-input component ((h, k; d, e) is identified for each
(h, /‘{) € H x ,Ct'

4.7 Discussion: Longitudinal vs. Cross-Sectional Dimension

In this section, we provide a high-level overview of our identification strategy, focusing on how it
leverages both the longitudinal and cross-sectional dimensions of the data. First, we use the longitu-
dinal dimension to identify the information technology, the law of motion of the state, and the CCPs.

Indeed, these primitives are identified by concatenating the wage mixture weights across periods.
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Next, we identify the deterministic wage component ¢(-) = y(-) + V(-) by adapting Proposition
’s approach in each period, thereby drawing on the cross-sectional dimension. Because (-) is left
nonparametrically specified and depends on s,, ;—whose support may vary across periods—o(-) is
effectively a time-varying function and must therefore be identified in each period, making the lon-
gitudinal dimension less helpful here. Finally, we once again leverage the dynamic dimension of
the model to identify the output (and human-capital) technology y(+), and in turn, the compensating
differential ¥(-) and deterministic labour-input component £(-).

A strength of our identification approach is its limited reliance on workers’ mobility across
jobs over time. Nonetheless, some heterogeneous variation in job choices—akin to job mobility—
facilitates identification of the output (human-capital) technology y(-) and the compensating differ-
ential U(-). Regarding y(-), recall the standard normalizations in Assumption [10| (as in the dynamic
discrete choice literature), which fix the value of y(-) at one firm for each state. These deliver
nontrivial identification only if, at the same state, workers can choose employment at at least two
different firms with strictly positive probability. Regarding W(-), note that for a given state realiza-
tion s € S;(e), the compensating differential of firm d relative to firm d', W(d, d', s), is obtained by
subtracting the expected output y(d’, s)—identified from observing d’ as the first-best firm at state
s—from the deterministic wage component ¢(d, d’, s)—identified from observing d’ as the second-
best firm at state s. Therefore, to identify W (d, d’, s), it must occur with strictly positive probability
(at state s) that firm d’ is both first-best and second-best across observations.

Lastly, although job mobility plays a limited role, we emphasize that we rely on a worker’s job
retention for at least three periods—a common pattern in standard datasets—to identify the infor-
mation technology, which in turn is key to pinning down all the other primitives, including the law
of motion of the state, the CCPs, the deterministic wage component, the distribution of productivity

shocks, the output (and human-capital) technology, and the compensating differential.
4.8 Estimation

In this section, we describe the procedure used to estimate the wage-equation parameters in our
empirical application. The procedure mirrors the structure of the identification arguments (a mix-
ture step followed by a quantile step), while introducing some parametric assumptions and other
simplifications to preserve tractability.

In a preliminary step, we estimate the learning process by constructing performance measures

from existing earnings data available in the LEHD dataset. While this data does not provide direct
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performance information, we can infer it from changes in observed earnings. Specifically, we focus
on individual-firm pairs with at least five quarters of employment. For any given quarter ¢, we first
calculate the average quarterly labor earnings from the preceding three quarters (quarters ¢ — 3 to
t — 1). We then define an observation of high performance pay as the dollar value of earnings in
quarter ¢ if those earnings are more than 50% higher than this calculated lagged average earnings.
Our identification procedure is more general and robust, as it does not rely on the availability of these

performance measures, whose construction typically involves additional assumptions.

/
n,t’

Furthermore, we treat each worker’s second-best firm, D/, ,, as known in every period. In particu-
lar, in the empirical application, we construct D], , by considering the worker’s labor markets defined
by industry and geographical location for classes of observationally equivalent workers (defined by
gender and education).

Our observables therefore consist of

/
(wn,ty Dn,ta D

n,t»

Hn,h Rn.t, Pn,t)-

Next, we assume that, for each second-best firm D,’%t = d' € D and efficiency type e,, = e, the
productivity shock €, .(d’, e) is normally distributed conditional on (D,, s, D), ,, Hp 1, Knts P, €n),

n,t’

with mean and variance allowed to depend flexibly on (D, ¢, D!

nit> Hn 1y Fing, Py, €q) to account for

the potential selection of D,, ; and D;m based on €, ;. Therefore, the conditional cross-sectional wage
distribution at time ¢ is a finite mixture of Normal distributions:
Pr(wn,t S w | Dn,t = du D;L,t = dla Hn,l - h; Rnt = R, Pn,t - p)

= Pr(en=e|Dny=d, D), =d Hyy =h,rn; =k, Py =p)

ecf
/ /
X Pr(wps <w | Dpy=d, D, =d,Hyy = h,kins = K, Pyy = p, e, =€),

where each mixture component is normally distributed:
/ U
W, t | Dn,t = da Dn7t = d7 Hn,l = ha Rnt = R,

Pas=p, e =~ N (p(d,d i, p,0) + pld,d By, ),
o*(d,d', h,K,p, e)) .

with u(d, d’, h, k,p,e) and 02(d, d', h, k, p, ¢) denoting the unknown conditional mean and variance
of €,+(d', e), respectively.

For each mixture component, we parameterized the deterministic wage, ¢(d,d', h, k,p,e) =
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y(d', h,k,p,e) + ¥ (d,d, h,k,p,e), with the finite-dimensional vector of parameters (.(e, d, d’) =
(By(e,d,d), By(e,d,d')). In particular, for y(-; B, (e, d,d’)), we assume a specification that depends
linearly on worker experience and the beliefs P, ; (see equation[23)). For W(-; B, (e, d, d')), we assume
a flexible quartic polynomial on workers’ experience, s, and beliefs, p, interacted with initial human
capital, h.

For each latent class ¢, = e € &£, we estimate [3.(e, d, d') using the extremal quantile regres-
sion approach of D’Haultfoeuille et al. (2018), implemented in the egregsel Stata command
(D’Haultfoeuille et al., 2020). This procedure estimates selection-corrected linear quantile regres-
sion coefficients at extreme quantiles by exploiting the behavior of the conditional wage distribu-
tion in the upper tail, in the spirit of our identification arguments. Under the regularity conditions
in |D’Haultfoeuille et al.| (2018), the resulting estimator is consistent and asymptotically normal,
and we compute standard errors using the bootstrap procedure provided by eqregsel. This in-
ner extremal quantile regression is nested inside an outer maximum-likelihood step, where we fit
a finite mixture of Normal distributions with |£| components and estimate the mixture weights
Pr(e, = e | Dny = d,D,,;, = d,Hy1 = h,kny = kK, Pyy = p), for example using the fmm

routine in Stata.

S The Impact of Sorting on Earnings Inequality

Here, we use our class of models and econometric approach to empirically measure how sorting be-
tween workers and firms affects earnings inequality in the U.S. The most commonly used framework
to address this question is that of AKM, which decomposes wages into worker and firm fixed effects,
observable covariates, and random shocks. From these estimates, the wage variance is partitioned
into the contribution of worker effects, firm effects, their covariance, and a residual. The impact of
sorting on earnings inequality is then gauged by the fraction of the total wage variance attributable
to the covariance between worker and firm effects. Empirical applications of this framework often
point to a negligible role for sorting due to the weak correlation between worker and firm effects.
Building on the theoretical insights from the class of models we study, we argue that the AKM
estimates of the correlation between firm and worker effects may be understated because two key
forces are omitted. First, the compensating differential can dampen the direct impact of worker
and firm characteristics on wages, because it compensates a worker for the forgone future wage
returns from the human capital and information that could have been acquired by accepting compet-

ing firms’ offers. Second, endogenous matching frictions, namely a worker’s acquisition of human
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capital and the gradual resolution of uncertainty about ability, may prevent high-type workers from
immediately joining the most productive firms. For instance, workers might persistently choose less-
productive firms that offer valuable training or learning opportunities, which challenges the common
presumption that workers always sort into the most productive match given their observed and fixed
unobserved productive characteristics. To empirically validate these conjectures, we provide both

simulation-based evidence and empirical evidence about them.
5.1 An Illustrative Simulation Exercise

In our first application, we simulate an economy based on a data-generating process (DGP) that
captures the main features of our class of models, while introducing a few simplifications to fa-
cilitate direct comparison with the AKM framework. Specifically, we remove the wage equation’s
dependence on the second-best firm (thus eliminating the need to impose Assumption 2)) and assume
away selection on €, ¢, since neither is present in AKM. Under these simplifications, workers’ wages
follow equation (§), are parameterized as:

Wpt = Z Z :H-{Dn,t - d7 €n:€} X |:€ + ﬁ(](d) + 51(d7 6) Hn,l + B2<d7 6) Rt + 63(d7 6) Pn,t

deD ee&

U (Hoy, Fongy Pusi 0(d,€)) + ene(d, e)] :
(21)

where the output technology y(-) consists of an AKM-style sum of worker and firm effects, e +
Bo(d), plus first-order terms in H,, 1, Ky, and P, governed by the parameters /31(d, e), B2(d, e),
and f33(d, e). The compensating differential ¥(-) is approximated by a truncated Taylor expansion,
which includes higher-order and interaction (cross) terms in H,, i, k¢, and P, ;, governed by the
parameters ¢ (d, e). H,,; consists of gender and education, while x,, ; incorporates age.

We calibrate the wage parameters and other simulation features to match key earnings moments
from PSID, a representative survey of U.S. households with panel information from 1968 to 2022.
These moments include wage growth, earnings life-cycle patterns (both first and higher-order), and
cross-sectional earnings inequality. We also include as targets the AKM-type moments from Song
et al.[(2019), which derive from SSA. This calibration ensures that our simulated economy reflects
both the broader U.S. earnings distribution and the key features highlighted by the AKM framework;
see Appendix [E] for details. As mentioned, the literature centered on the AKM framework measures
the impact of sorting on earnings inequality based on firm and worker (linear) complementarities in
the output technology y/(+). Correspondingly, this literature focuses on the fraction of the total wage

variance attributable to the covariance between worker and firm effects or, by the notation of the
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Figure 1: Comparison of True Values vs. AKM Estimates of p
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wage equation in (1)), p := Cov(ey, 8o(Dn,))/Var(wyy).

Assuming that the econometrician has access to a short panel of data on w,,;, H, 1, kn 4, and
P, ; from the simulated economy—for simplicity, we assume that beliefs about workers’ ability are
observed—the AKM estimate of p, denoted by pakwm;, is obtained by estimating the wage equation

Wn,t = Z Z E{Dn,t = d7 €n = 6} e+ BO(d) + 51 Hn,l + ﬁQ Rnt + BB Pn,t + 6n,t(d7 6)] ’ (22)
deD ec&

where the compensating differential ¥(-) is omitted and the parameters J3;, /32, and /33 are assumed
to be invariant across (d, ¢). Our findings suggest that when W(-) is negative—implying that work-
ers match with firms offering human capital and information gains with future returns higher than
competitors—paky underestimates p because the omitted W(-) attenuates the firm and worker com-
plementarities in output technology y(-). Conversely, when W(+) is positive—so that workers match
with firms offering human capital and information gains with future returns lower than competitors—
Pakm overestimates p because the omitted W(-) enhances the firm and worker complementarities in
output technology y(-). Figure 1| illustrates these patterns. On the horizontal axis, we plot the in-
creasing values of p used to generate our data, while on the vertical axis we report the corresponding
AKM estimates. The blue line corresponds to the case W(-) = 0 in the true DGP—though it does
not perfectly coincide with the 45-degree line because, even though W (-) = 0 in the true DGP, the
parameters (31 (d, e), 52(d, e), and P3(d, e) still vary across (d, ¢), whereas AKM incorrectly treats
them as invariant across (d, e). The red line shows results when workers ¥(-) > 0 (leading to an

upward bias), and the yellow line shows results when ¥(-) < 0 (leading to a downward bias)

2'We adjust standard AKM estimates for low-mobility bias, following the methodology of Bonhomme et al |(2023).
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5.2 Monte Carlo Simulation

The previous results ignored two key features of our model, both of which we now bring back. In
particular, we next simulate the economy of our model, with only a few simplifications that allow for
a simpler solution of the model. Specifically, we assume that the economy comprises only two firm
types (d), whereas workers can be of many types (e). Production takes a linear form that depends on
a type-dependent intercept and on the beliefs about a worker’s ability, P, ;. We further assume that
within the firm, there are two possible jobs, denoted by & € { H, L}, with high and low skill require-
ments, but that entail identical opportunities for information and human capital acquisition, and that
workers have a comparative advantage depending on their own observable skills—namely, high-skill
workers produce more, on average, than low-skilled workers in the high-skilled job whereas low-skill

workers produce more, on average, than high-skilled workers in the low-skilled job.

Simulation. As in our previous exercise, we simulate data from our model parameterized so that it
matches standard cross-sectional moments of the earnings distribution in the U.S., for instance, life-
cycle profiles of average and standard deviation of (log) earnings, standard deviation, skewness, and
kurtosis of earnings growth, and measures of top-earnings concentration. In simulating the model,
we solve it by backward induction. That is, starting from a given final period 7', we assume that the
continuation value for every worker is equal to zero after period 7'. Exploiting the efficiency of our
equilibrium, we determine optimal equilibrium allocations by solving for the planner’s problem of
choosing for a worker, given each beginning-of-period state, the optimal firm and job. We then use
equation (/) to determine a worker’ wage at each time and state. Conveniently, since there are only
two types of firms in this economy, we can easily identify the second-best firm for each worker.

Given the solution of the planner’s problem and the equilibrium wage in period 7', we can proceed
one period backward and solve the problem in period 7" — 1 fully knowing the continuation match
surplus value function for each worker. In any such period, a worker’s assignment to a particular
firm and job depends on the present value of the worker’s output, but wages now also contain the
compensating differential term, which we calculate given the worker’s match surplus continuation
value with the current first- and second-best firm from next period on. We proceed in this fashion for
30 periods, so our model captures most of the standard working life cycle.

In our simulation, worker’s output is denoted by Y (S, 4, €1.n.t, €mn ) With s, = (Hi g, Knt, Py, €),
that is, output depends on H,, ;, that captures the initial human capital of an individual (e.g. educa-
tion), k,; represents experience, and F, ; captures the beliefs of the worker’s type. Output is also

affected by (€r, ¢, €m,n¢) Which are idiosyncratic job-specific productivity shocks for low and high
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skill job types. Then, for a worker type e, the planner’s problem is

Y (Sn,ta €L.n,t> EH,n,t) = gé%x {?J (d7 Sn,t) + 5(1 - n(ffn,t, d))E [Y (Sn,t+1, €Lnt+1, EH,n,t-I-llSn,tv d)]}

g (d) Sn,t) = Inax {yL (d, Sn,t) + €ELnt YH (da Sn,t) + 6H,n,t}
yr (da Sn,t) lf YL (d7 Sn,t) + EL,n,t Z Y (d7 Sn,t) + 6H,n,t

Yy (d7 Sn,t) -
ypg (d, s,) otherwise,
where
P, . _
O‘h,d,ePn(,);h;dﬁ’z_’d’:(lan’t) lf a’TL,t (d7 6) S a (6)
Py = ()i 7

(1=and.c) Prat(1=Bnae ) (1—Prr) otherwise

yL(da Sn,t) = COL(da ) + ClL(da ')Pn,t and Z/H(d, Sn,t) = COH(da ) + ClH(da ')Pn,ta (23)

with (or(d, ) = Cor(d, Huts bing, €) > Cou(d,-) = Cou(d, Hpt, fng, €) and (i1(d,-) = CGin(d, Hy -
Fnt€) < Cu(d,-) = Gu(d, Hyyt, knt, €) to capture the idea that low-ability workers have a com-
parative advantage at the low-skill job whereas high-ability workers have a comparative advantage
at the high-skill job. We can then express wages and compensating differential as

yr (d/, Sn,t) + EL,n,t + \I](da dl: Sn,t) lf yL (dla Sn,t) + EIL,n,t Z YH (d,, 3n7t> + 6}{771,15

?

Wy (d,d €)=
Yy (', Snt) + €ant +Y(d,d, s,) otherwise

where U (d, d', s,,+) is the difference between §[1 — 1 (knt, )| E[Y (Spt+1, €Lntt1, €Hntr1]Snt, d)]

and 9§ [1 -1 (K'n7t7 d)] E [Y (Smt—ﬁ—l; €Lnt+15 6H,n,t+1|3n,t> d)]

Estimation. The goal of our Monte Carlo exercise is to show that, despite its complexity, our model
can be easily estimated using relatively standard empirical methods that combine quantile regression
and mixture model estimation. We start by simulating an economy comprised of two firm types
and a large number of workers characterized by their unobserved type, their skill, and initial human
capital, h. We also assume that workers and firms share initial beliefs about worker types, p, which
are updated following Bayes’ rule using output realization, y(d, s,+), as a noisy signal of workers’
true ability. Our entire panel is consistent on 1 million workers simulated between ages 25 and 55
(30 periods).

Next, we aim to recover the key parameters of the production function (the ¢’s). For numerical
expediency, we approximate the compensating differential through a flexible-enough polynomial

that well captures the shape of the compensating differential. In particular, we estimate the mixture
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model over the distribution of (unobserved) worker types e, where wages are assumed to follow

wn,t(d7 d,7 kj) - BO (d,7 k)+61 (dla k) ]IH + 63 (d/a k) Kn,t+ﬁ4 (d/7 k) Pn,t_l_\:[[(dv d/a Sn,t)+€n,ta (24)
Cok(d',") Cir(d'y)

for a given worker type in a given firm type d and job type k € {L, H}, which are treated as
observables. Here, the [; is a dummy that captures the initial human capital of the individual—
for instance, educational attainment. The first two components aim to capture the worker’s output,
whereas the third term is the compensating differential, ¥ (d, d’, s,, ;). We approximate U via a flex-
ible polynomial form on initial human capital, experience, and beliefs—which turns out to provide
a very accurate approximation to the true compensating differential. Notice that if there was no
selection in our model, we could estimate this mixture model via maximum likelihood to obtain esti-
mates of the distribution of the underlying worker type, allowing for a flexible polynomial to capture
U(d,d, s,,;)—for instance, estimated using the mfp command in Stata. In our model, however, the
presence of selection on observables and unobservables precludes using OLS for such estimation. To
address this, we apply the extremal quantile selection procedure proposed by D’Haultfoeuille et al.
(2018)) to estimate semiparametric selection models. We modify their procedure in two ways. First,
we incorporate a polynomial fitting step for W within the quantile regression step, which we use to
estimate (24)). Second, we impose an alternative normalization to be able to recover the full intercept
of expected output (5y(d’, k)), in the wage equation, by normalizing instead the relevant quantile of
the (productivity) shock in the wage equation.

Figure |2 shows the results for our calibrated economy. The top left panel shows the distribution
of wages, w,.(d,d', k) generated by our model, which resembles the distribution of labor earnings
in the U.S..The top bottom right of Figure [2] shows the distribution of the compensating differen-
tial, U(d, d', s,+), which is typically negative, indicating that for a large number of workers in our
simulated economy, the compensating differential reduces wages relative to output as they trade hu-
man capital accumulation and learning opportunities for higher current wages. Our simulation also
matches an increase in average labor income of about 60% for workers between 25 and 55 years old,
as observed in U.S. PSID data (bottom-left panel). The bottom right panel shows the standard devi-
ation of labor earnings, which increases by 11 percentage points, which is about 2/3 of the increase
observed in PSID over the same period.

Given the simulated economy, the next step is to validate our estimation procedure by estimat-

ing the key parameters of [24] to retrieve the coefficients underlying our simulation. The results of
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Figure 2: Wages Distribution and Compensating Differential in Simulation
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this exercise are shown in Table [T} which reports the estimates for our simulation with two worker
types and two firm types at a few selected quantiles of the income distribution. Here, we focus our
discussion on workers with the lowest level of ability (lowest value of H,, ;); a similar one applies to
the other type. Our key result is that our estimation recovers the key parameters of the production

function—the linear component shown in column Value—and the fit improves as we move to lower

ranks of the wage distribution, which is consistent with the intuition of D’Haultfoeuille et al. (2018):

lower quantiles better capture the selection of the job at the first- best vs. the second-best firm. In

fact, our procedure is the most accurate when we focus on the bottom 0.1% of the wage distribution,

which is close to the optimal quantile obtained using D’Haultfoeuille et al.| (2018)).
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Table 1: Comparison of Parameters and Model Estimates

Coefficient Value OLS Quantile Regressions at
0.1% 0.5% 1% 5% 10%
Worker Type 1

Bo 049 053 049 049 049 049 049
BH, . 0.17 019 0.15 016 016 0.17 0.18
B s 1230 10.02 1231 1231 1231 1229 11.89
Bpn;t 011 329 0.2 008 0.07 006 035

Worker Type 2
Bo 021 025 021 020 021 021 0.21
BH,, . 020 014 010 0.10 010 0.10 0.11
B, 961 615 956 940 945 915 876

Bp, 014 318 014 025 023 049 085

Note: results from model simulation. Column "Value" indicates the calibrated values of the production function. The rest of the columns are
the estimated values of these parameters from a mixture estimation. The underlying model is a fractional polynomial estimation that includes a
linear term for Hp, ¢, kn,t and Py, ¢ and a flexible polynomial of these variables to capture the compensating differential, ¥, +. The estimation
is done using a quantile regression at different quantiles of the wage distribution.

5.3 Empirical Application

Having validated our estimation procedure, we now move to estimate the wage equation (21)) using
U.S. employer-employee match data, namely LEHD data. This rich dataset provides quarterly labor
earnings for all workers across 21 states—including California, Florida, and Pennsylvania—from
the mid-1990s to 2022. We directly observe each worker’s current firm, wage, gender, education,
and age. Performance measures—in the model’s notation, signal a,, ,—are not directly observed, and
we built a procedure to infer them from workers’ variable pay. The idea is that the quantiles of the
variable pay distribution identify performance measures to the extent that variable pay is monotonic
in performance. Based on these extracted performance measures, we are able to estimate P, ; for
each worker n and period ¢ and so treat P, ; as a “covariate” in the subsequent wage estimation step.
Note that this construction of P, ; is not necessary for our more general identification framework,
where we show how to identify the distribution of P, ; from the wage mixture. Additional details on
the procedure used to construct P, ; are provided in Appendix [F}

To estimate the wage equation , we assume that €, .(d, ) is normally distributed conditional
on e, = e. Consequently, if there was no selection on ¢, , the distribution of w,,; conditional on
(Dnty Hp1y Knt, Pnt) would be a finite (because £ is finite) mixture of Normal distributions. In that
case, we could simply use the Stata command fmm to estimate the wage parameters, since it com-
bines the estimation of Normal mixtures with OLS. As in our simulation exercise, if there were no
worker efficiency types e,,, we could rely on the Stata package eqregsel to run extremal quantile
regressions that account for selection on ¢, ; (D’Haultfoeuille et al., 2018, 2020). To accommo-

date both aspects simultaneously, we follow our estimation results and use our implementation of
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egregsel developed by D’Haultfoeuille and Maurel (2013) to allow for mixture estimation and
polynomial approximation of the compensating differential.

Our empirical results (currently awaiting approval from the Census Bureau before disclosure)
corroborate the findings from our simulations. In particular,the AKM estimates of p based on the
wage equation fall below our own estimates of this parameter. This is because the estimated W (-)
is, on average, negative, suggesting that workers tend to match primarily with firms offering human
capital and informational gains associated with high future wage returns. This finding indicates that
our model provides a potential avenue for the resolution of the puzzle of low sorting.

We support this key finding with an exercise designed to capture global sorting in our rich class
of models. By construction, p measures sorting exclusively with respect to the worker time-invariant
efficiency type e,. However, in our setting, workers may also sort on their beliefs about ability 6,
and on accumulated human capital (endogenous matching frictions). To capture these additional
sorting dimensions, we perform a random reallocation exercise, comparing the observed earnings
distribution to a counterfactual scenario in which workers and firms are matched at random. If
sorting indeed has a substantial impact, then disrupting these links should markedly reduce both
earnings dispersion and the concentration of high earnings, since workers would no longer cluster
in the firms offering the greatest productivity or the most valuable human capital and informational

benefits. Our preliminary evidence supports all of these mechanisms.

6 Conclusion

In this paper, we examine the empirical content of a large class of dynamic matching models of
the labor market with ex-ante heterogeneous firms and workers, symmetric uncertainty and learning
about workers’ ability, and firm monopsony power. We allow workers’ ability and human capital,
acquired before and after entry in the labor market, to be general across firms and jobs to varying
degrees. Such a class nests and extends known models that have been used to study worker turnover
across firms, occupational choice, wage differentials across jobs, firms, and occupations, and wage
inequality across workers and over the life cycle.

We provide a novel argument to establish that these models are identified under intuitive con-
ditions, solely from data on job choices and wages. In particular, we do not rely on any additional
information that could facilitate the identification of the learning process, such as proxies for be-
liefs or direct measures of signals about ability. Moreover, we do not impose any restrictions on

endogenous variables or on the dynamics of states, choices, and outcomes. Instead, our argument
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rests on conditions that allow for arbitrary patterns of selection based on endogenously time-varying
unobservables, are easy to verify, impose minimal data requirements, and yield a simple constructive
estimator of the primitives of interest, as shown in our empirical application.

Using this framework, we revisit an outstanding puzzle regarding the role of labor market sorting
for wage inequality. We demonstrate that ignoring the dynamics of the matching process between
firms and workers due to human capital acquisition and learning about ability—and the resulting
compensating differentials in wages when firms differ in the human capital and information opportu-

nities they offer—can lead to a systematically underestimating the importance of sorting for wages.
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A Extensions of Identification Argument

We discuss here extensions of our identification framework.

Support £ of Efficiency ¢,,.. To identify the wage mixture (I9), Assumption [3(ii) imposes that & is
finite. If e, is continuous (and potentially multidimensional), then the wage mixture (I9) becomes
a continuous mixture of potentially continuous Gaussian mixtures, making identification more chal-
lenging. This impasse can be easily resolved by assuming away selection of D, ; based on ¢, ;. In
that case, Assumption [3(i) can be replaced by requiring that the unconditional distribution of €, is
Normal. Since D, ; is now independent of ¢, ;, the distribution of ¢, ; conditional on D, ; equals
its unconditional distribution and is therefore also Normal. Under this simplification, the wage mix-
ture (19) is a continuous mixture of Normals, whose identification is established by Bruni and Koch

(1985)’s Theorem 1.

Support A of Signal a,, ;. As for £, Proposition @] can also be adapted to cases where a,,, is con-
tinuous (and potentially multidimensional), provided that there is no selection of D,, ; based on €, ;.
To identify the learning process in Proposition [5] Assumption i) imposes that A has a cardinality
of two. As explained in Section this restriction enables us to represent the signal distribution
as a binomial mixture over the unobserved ability 6,,, which is identified based on Blischke| (1964,
1978). This assumption can be extended to include other cardinalities and potentially continuous
and multidimensional a,, ;, provided that the signal distribution remains an identifiable mixture. For
instance, if a,,, is distributed as a continuous and multivariate Gaussian mixture conditional on 0,
then the signal distribution would then be a finite mixture of continuous and multivariate Gaussian
mixtures (finite because O is finite), which remains identifiable according to|Bruni and Koch/ (1985)),

as discussed in their Section 4.9.

Support © of Ability 6,,,. To identify the learning process in Proposition [5, Assumption (i) re-
quires that © has cardinality two. This restriction allows us to model the signal distribution as a
binomial mixture over the unobserved ability ,, with fwo components. The binomial aspect arises
because A has cardinality two, and the two components of this binomial mixture correspond to the
cardinality of ©. This mixture is identifiable, as shown by Blischke|(1964) and Blischke|(1978)), pro-
vided that the number of periods where workers are observed at each given job d is atleast 2r—1 = 3,
where r = |©] = 2 represents the number of mixture components (see Appendix@for more details).
Keeping A of cardinality two, Assumption [0]i) can be extended to any finite O, requiring an increase

in the number of observation periods to meet the new lower bound 2r — 1. Going beyond the finite

1



case, if both 0,, and a,, are continuous and multidimensional, and a,, ; follows a multivariate Normal
distribution conditional on 6,,, then the signal distribution is a continuous mixture of multivariate

Normals, identified by Bruni and Koch| (1985)’s Theorem 1.

B Additional Results

B.1 Micro-Fundation of Assumption (iii) of Proposition

Lemma |[I] shows that if the productivity shocks are “sufficiently independent,” then Assumption (iii)

of Proposition [3|holds.

Lemma 1 (Moderate Dependence). Let Assumptions (i)—(ii) of Proposition 3| hold. For some q, €
(0, 1], let
lim Pr(e,(0) <e,(1)+a|e,(l1) >u)=q  foralla€R. (25)

U—>-+00

Then, Assumption (iii) of Proposition |3\ holds:

lim Pr(D,=1|X, =z, w,(1) >w)=q foreveryux.

w—-+00

Moreover, if €,(0) and €,(1) are independent, then q; = 1.
Proof. Fix a realisation z of X, and w € R. In the static Roy model,

Pr(D, =1|X, ==z, w,(1) > w) = Pr(y(1,2) + e,(1) > y(0,z) + €,(0) | X, =z, y(1,2) + €,(1) > w)

= PI‘(En(O) < En(l) + y(17$> - y((),x) ’ En(l) > W — y(l,ﬁ(])),
(26)

where the last equality uses Assumption (i) of Proposition 3>/
Setu :=w — y(1,x), so w — +o0 iff u — 400. Applying with a = y(1,z) — y(0, z) gives

lim Pr(e,(0) < e,(1) + a(z) | &(1) > w—y(l,z) = q. (28)

w——+00

22In our dynamic generalised equilibrium Roy model, we can likewise obtain an equation analogous to (26)). In fact,
under Assumption[2[i), the equilibrium is efficient. In an efficient equilibrium, job choices maximise the expected present
discounted value of output. Therefore, for any (d,d’, e, s) € D? x £ x Sy(d,d’,e) and w € R,

Pr(D t:d|snt e)=s, wy(d,d e <w)

- Pr(Y d,s) +eni(dye) > Y(d,s)+ ens(d,e) | t(e)=s, p(d,d' s)+ e, i(d,e) < w) 27
- Pr(en,t d,e) > eni(d,e)+Y(d,s)—Y(d,s) | en,t(d’,e) <w — p(d, dﬂs)),

where Y (d, s)+€5,:(d, €) is the expected present discounted value of output for firm d in state s after productivity shocks
have realised; the last equality uses Assumption E}



By (26), is precisely

lim Pr(D,=1|X, =, w,(1) >w)=q,

w—r+00
which is Assumption (iii) of Proposition 3]
Now, suppose €, (1) and ¢, (0) are independent. Then, for any « € R and u € R,
Pr(e,(0) < e€,(1)+a e (1) >u) = E[Pr(en(()) <e(l)+alen(l))

= E[Fen(g) (€(1) 4+ a) | €,(1) > u],

en(1) > u}

where the second line uses independence of €,(0) and €,(1). Since F, o is nondecreasing,
F.ou+a) < F. o(e(1)+a) < 1 ontheevent{e,(1) > u}.
Taking conditional expectations yields the bounds

Fen(o)(u + a) < E[ Fen(O) (en(l) + a)

€n(l) > u] < 1.
Letting v — 400 and using lim,_, « F¢,(0)(7) = 1, we conclude that
lirf Pr(e,(0) <e€,(1) +ale(l) >u) =1,
U—+00

soq = 1.

(29)

]

Remark. Suppose that €,(1) and ¢,(0) are jointly normal—or lognormal. If cov(e,(1),€,(0)) <
Var(e,(1))—orif cov(log(e, (1)), log(€,(0))) < Var(log(e,(1)))—then (23) holds with ¢; = 1. Sim-

ilar “sufficient independence” conditions can be given for many other parametric families, including

both thin-tailed (for instance, Normal, Exponential, Gamma, Logistic, Gumbel) and fat-tailed (for

instance, Pareto, Cauchy, Burr, Fréchet, log-logistic, and lognormal) distributions.

B.2 Proposition 3 with Bounded Support

Proposition |12 establishes identification of the deterministic wage components in the case where the

potential wages w, (1) | X,, = x and the observed, selected wages w,, | (D, = 1, X,, = x) have

different right endpoints. The identification result retains the spirit of Proposition [3] but extra care is

needed in taking limits because the two endpoints differ. We further show that, when finite, the right

and left endpoints of the potential wages wy,(1) | X,, = x are identified (Corollary [6).

Proposition 12 (Deterministic Wage Component with Bounded Supports). Assume:

3



(i) (Exogeneity.) €,(1) is independent of X,,.
(ii) (Supports.) For each realisation x of X,
w(z) =sup{u: Pr(w,(1) <u| X, =2) <1} < 400,

Wobs () == sup{u: Pr(w, <u|D,=1,X,=12) <1} < w(x),

0<Pr(D,=1]|X,=12) <1,
with w(x) and wons(x) potentially unknown.

(iii) (Relative Tail Decay.) For each realisation x of X,, define
ro(u) = Pr(D, =1|X, =2, wy(1) > Qu,1)x,=(1)), u e (0,1).

There exists an (unknown) constant ¢; € (0, +00) such that, for every x and a fixed reference

’ re(u)
u—1 1z (u)

=1

(iv) (Tail Regularity.) For each realisation v of X, there exist (unknown) thresholds w, < +oo

obs

and w;

< Wobs(x) such that F,, ) x,=2 and F,,|p,=1x,=. are continuous and strictly
increasing on (w,, +00) and (WS, wons(2)), respectively. Moreover, F,, b, —1 x,— is contin-
uous at the endpoint:

lim  Fy,p,=1,x,=2(w) = 1.
wawobs(l‘)

(v) (Normalization.) There exists a known realisation T of X, with y(1,z) = 0.

For each realisation x of X, let {Tjgk)}k21 C (0,1) be any sequence with Ték) — lask — +oc.

Define
)

Pr(D,=1|X,=12 k
1— 70 — n n 1— M), 30
Then,

Jim | Qu, 15,21x,=(7) = Quiip,mrx,=a(n) | = w12 31)

Hence, y(1, x) is identified (up to the normalization at T).

Proof. To facilitate reading, we divide the proof into steps and box the key equations in each step.

Step 1 (Bayes rule). Fix a realisation = of X,,. For any real w, Bayes’ rule gives




Swn\Dn:I,Xn:z (w)
(32)

Define

Evaluating (32) at w = Q. (1)|x,,== () yields

re(u)

Swn\Dn—l Xn—r(an |Xn—x(u)) = (1 - 'U,) PI‘(Dn -1 | X, = x)’

we (0,1).]  (33)

Step 2 (Behaviour of the composed survival near the observed endpoint). By Assumption (iv), there

exist thresholds w, < w(x) and wS™ < weps(x) such that F,, (1)x,— is continuous and strictly
increasing on (w,, w(x)), and F,,|p, =1,x,— is continuous and strictly increasing on (w2, webs(z)).

Define

U; = Fwn(l)‘Xn:x<w-'E>? T; = wnan:LXn:Z’(wgbs)

)

SO Quop ()| Xnez © (Uh, 1) = (wy,w(z)) and Quy pp=1,x,=z : (T521) = (WS, wons()) are strictly

increasing. Because wops(z) < w(z), set

Uy = sup {u € (u},1) 1 Qupn1)xnms(t) < wons(z)} € (

Then, Qu,1)x,==(®) = Wobs(T) a8 u — Uy. Since Qu,1)x,==(u) is increasing and wgps() is
finite, there exists @, € (u, i) such that Qu,, (1)x, =z (1) € (W, wens(x)) for all u € (i, ;). On

that interval the map

U — Swn|Dn_1 Xn_a:(an |Xn—:6(u)>

is a composition of a continuous, strictly increasing function (the potential quantile) with a continu-
ous, strictly decreasing function (the observed survival on its tail), hence it is continuous and strictly

decreasing on (1, u,). By the endpoint continuity in Assumption (iv),

hm Fwn‘Dn:Lanx(w) = 17
W—Wobs (T

and therefore

lim Swn|Dn—1 Xn—x(an |Xn—:p(u)> = 0. (34)

U1y




Step 3 (Exact tail matching). By the continuity and strict decrease of v — Sy, |p,=1,x, =2 (Qu, (1) X0 =2 (1))

on (@, u,) and its limit 0 as u — u,, there exists 7, € (7, 1) such that for every 7 € (7,, 1) there is

a unique u,(7) € (4, u,) solving

Swn|Dn:1,Xn:J:(an(1)\Xn:a:(um(T))) =1-7

Combining this with S, |p,=1,x,=2(Quwn|D,=1,x,=2(T7)) = 1 — 7 forall 7 € (7, 1) and the strict

obs

decrease of w > Sy, D, =1,x,= (W) On (W2, Wops (7)) yields

anan=1,Xn=w(7—) = an(1)|Xn:w(uz(7)) forall 7 € (7:1, 1). (35
Moreover,
71_1_1& Uz (T) = Uy (36)

Step 4 (Cross-x T-alignment and the product identity). Fix any sequence {T,;Ek)}kzl C (0,1) with

9

— 1. For each z, define

. Pr(D,
v Pr(D

[ Xn=2) . @
. 1% s (1—7). (37)

)

Let ul” = um(ngk)) and v = uf(Ték)). Using (33) at u = u and u = uP,
(k) (k)
LB (] — oy ® re(us”) LB ®) ra(ug)
Divide the two equalities and use to obtain
(1= ) ra(us)
CINSTNCN (38)
(1 —uz ) ra(uz )

Step 5 (Aligning tail probabilities across covariates). Under Assumption (iii),

Ty (uf(pk))
k—+o00 Tz (’U/i,k)

=q € (0, —|—OO).

By (38, v — @, and u{® — @,. Since @z, 4, < 1 and r5(), r,(-) are continuous near those limits

(by Assumption (iv)), (38)) implies
1—
lim z_—
k—+o00 1 — u(k)

T

1,



and therefore

lim (ul® —ul) = 0. (39)

k——+o0 z

Step 6 (Identification by differencing). Assumption (i) implies

Qun () xp=2(u) = y(L,2) + Qc,1)(u) forall u € (0,1).

Apply atT =" andat 7 = Té’c);

Quntpa=t %, =) = y(1,2) + Qe (uM),

k xk (40)
Quaipn=t xot(7) = y(1,2) + Qery (ul).

By (39) and continuity of (), (1) near the upper tail,

lim Qe () = Qo () ) = 0.

k——+oo

Subtracting the equations in and using y(1,Z) = 0 (Assumption (v)) yields the identification

result:

lim [an|Dn=l,Xn:a:(Ta(;k)) - an|Dn:l,Xn:i‘(Ta’gk)):| = y(lvl’)

k—+4o0

]

Remark. The only substantive difference between Proposition [3|and Proposition[I2}—apart from the
support restrictions in Assumption (i1)—is that Assumption (ii1) in the unbounded case is replaced, in
the bounded case, by a relative tail decay condition. For reference, Assumption (iii) of Proposition 3]
posits that there exists an (unknown) constant ¢; € (0, 1] such that, for each realisation z of X,

lim Pr(D, =1]X, =2z, w,(1) >w) =q. (41)

w—w(x)

The requirement is too strong—and in fact necessarily violated—under a strict support gap
wobs(2) < w(z) (Assumption (ii) of Proposition [I2)). To see this, Bayes’ rule (Step 1 of the proof)
implies, for any realisation z of X, and any w,

Pr(D, =1| X, =z, w,(1) > w)
Pr(D,=1]X, =1) '

Swn|D=1,Xn=2(W) = S, (1) x,=2(W)

For any w € (wops(x),w(x)) we have Sy, |p,=1,x,=2(w) = 0 while S, )x,=(w) > 0 and



Pr(D, =1|X, =) > 0, hence
Pr(D,=1|X, =2, w,(1) >w) =0 forallw € (wons(x),w(x)).

Therefore the tail selection probability collapses to zero as w — w(x), forcing ¢; = 0 in @I)). A
positive limit could arise only in the case wqns(z) = w(x), which is excluded by Assumption (ii).
This is why we adopt a relative tail condition in place of (#1)): it governs the rate at which tail
probabilities vanish across x (via ratios) rather than imposing a common nonzero limit that cannot

hold under a support gap.
B.3 Identification of Support Endpoints

Corollary |§] shows that, when finite, the right and left endpoints of the potential wages w, (1) |
X, = x are nonparametrically identified. Intuitively, for each z, the endpoints of the observed,
selected wage distribution, w,, (=) and wps(x), are read directly from extreme quantiles: very low
quantiles approach the lower endpoint and very high quantiles approach the upper endpoint. Because
the deterministic part of wages y(1,x) is already known by Proposition 12| we can “shift” these
observed endpoints to learn about the latent endpoints of both the shock €, (1) and the potential wage
w,(1) = y(1,2) + €,(1). Selection trims the extremes, so the observed support sits inside the latent
one: w () > w(z) and weps(x) < w(x), with w(z) = y(1,2) + we and w(x) = y(1,2) + w,.

Taking the best (tightest) such shifts across x gives bounds:

Sgp{wobs(x) —y(Lo)} Swe,  w, < inf{wg,(z) —y(L2)},

and adding back y(1, z) yields corresponding tighest bounds for w(x) and w(x). Moreover, if there
exists a covariate value x* where selection does not truncate the top (wWops(z*) = w(z*)), the upper
latent endpoint is revealed by the extreme quantile at x*:

We = lim {an|Dn:17Xn:$* (T) - y(17 .T*)},

T—1

and then w(x) = y(1,x) 4+ w, for every x. A symmetric argument applies to the lower endpoint if

selection does not truncate the bottom at some 1.
Corollary 6 (Identification of finite right and left endpoints of €,(1) and w, (1)). Maintain the as-
sumptions of Proposition implying that y(1,x) is identified for each realisation x of X,. In

addition, assume finite and distinct endpoints, with two-sided tail regularity: for each realisation x



of X,
w(z) = inf{u : Pr(w,(1) <u| X, =) >0} > —o0,

w(z) =sup{u : Pr(w,(1) <u | X, =) <1} < +o0,

Wobs

() =inf{u: Pr(w, <u| D, =1,X, =) >0} >w(z) > —o0,

Wobs() = sup{u : Pr(w, <u|D,=1,X, =2) < 1} <w(x) < o0,
with F,, (1yx, =2 continuous and strictly increasing on (w(z), w,) U (wl,, w(x)) for some w, < wy,
and F,,,|p,=1x,— continuous and strictly increasing on (wg(x), we™) U (we™), wens(x)) for

T x

some w2 < (we™), as well as continuous at both endpoints:

lim Fwn\Dn:LXn:ﬂC(w) == 0, lim Fwn|Dn:17Xn:I(w> =1.
wg)wobs(x W—Wobs (T

Define the shock €, (1) (finite) endpoints as:
w, = inf{u e R: F 1)(u) > 0} > —o0, we = sup{u € R: F, q)(u) <1} < 4o0.
Then:

(a) (Observed wage endpoints are identified.) For every realisation x of X,,, w, () and wops()

are identified:
Wons () = ll_% Qun|Dn=1,%=2(T), Wobs (T) = ll_fg Qun|Dn=1,Xn=2(T)-

(b) (Sharp bounds for latent endpoints.) For every realisation x of X, a lower (resp. upper
bound) bound for w. (resp. w.) and a lower (resp. upper bound) bound for w(x) (resp. w(x))

are identified:

Le = sup {wos(a) = y(1,2)} < we, Vo= inf {wes(e) —y(1,a")} > w,,

w(z) < min{ Wops(), y(l,x) 4+ Ue }, w(z) > max{ wWobs(z), y(1,z) + L. }

Moreover, these bounds are sharp under the stated assumptions.

(c¢) (Right endpoint point identification under no top truncation at some x*.) If there exists a
known realisation x* of X,, with wops(x*) = w(x*) (i.e. the finite right endpoint of the selected
observed wages equals the finite right endpoint of the potential wages, in other words, selec-

tion does not affect the rightmost support of wages at x*), then, for every realisation x of X,



we and w(zx) are identified:

we = lim [an\Dn:LXn:m* (1) —y(1, x*)},

T—1

w(x) = y(lv .Z') + 71_1_I>q [an|Dn:1,Xn:x* (T) - y(la x*)] .

(d) (Left endpoint point identification under no bottom truncation at some x'.) If there exists a
known realisation " of X, with w.,.(z") = w(z") (i.e. the finite left endpoint of the selected
observed wages equals the finite left endpoint of the potential wages, in other words, selection
does not affect the leftmost support of wages at x'), then, for every realisation x of X, w, and

w(x) are identified:

W, = lim |:Qw'n,|Dn:].,Xn:l’T (7) - y(17 xT)}’
T—0

w(w) = y(1,2) + 1 | Qu, p, =1 =01 (7) = y(1,2)]

Proof. We present the proof for right endpoints; the argument for left endpoints is symmetric.

(a) Fix any realisation = of X,,. By Assumption (iv) of Proposition @, Fo,|Dn=1,X,=2 18 continu-

ous and strictly increasing on (w°, weps(x)) and continuous at the endpoint. Therefore, its upper

quantiles converge to the endpoint, yielding (a).

(b) Fix any realisation x of X,,. Assumption (i) of Proposition [I2]implies
w(z) = y(l,7) + we. (42)
By Assumption (ii) of Proposition {12} wops(x) < w(x) for each x, so
wobs(z) —y(1,2) < w(z)—y(l,x) = w..

Taking the supremum over x yields a lower bound for w,.. Adding y(1,z) gives a lower bound for
w(z). These bounds are the best possible (sharp) without further restrictions.
(c) Fix any realisation = of X,,. If there exists a known realisation z* of X, with wgps(z*) = w(z*),

then by (a), w(z*) is identified:
w(z*) = lim an|Dn_—1,Xn:x*<7 )-
T—1

Using (@2)) written for z* and recalling that y(1,2*) is identified by Proposition gives w, =
w(z*) — y(1, z*). We plug this into (@2)) and complete the proof. O

10



B.4 Proposition 3 with Location and Scale Parameters

Propositions and extend to wage specifications in which the shock ¢, (1) is multiplied by a scale

parameter o(1, X,,) > 0:

wy= Y YD, =dbw,(d)= > D, =d}y(d X,)+0(dX)en(d)].  (43)
def{0,1} de{0,1}

Proposition 13 (Identification of y(1,-) and o(1, -)). Assume:

(i) (Exogeneity.) €,(1) is independent of X,.
(ii) (Supports. F_g] For each realisation x of X,

w(z) =sup{u : Pr(w,(1) <u| X, =) < 1} = 400,
Wobs() == sup{u: Pr(w, <u|D,=1,X, =2) <1} = o0,

0<Pr(D,=1|X,=2)<1

(iii) (Tail Limit.) There exists an (unknown) constant q; € (0, 1] such that for every realisation x
of X,
lim Pr(Dn =1|X, =z, wy,(l) > w) =q.

w—+400

(iv) (Tail Regularity.) For each realisation x of X,, there exist (unknown) thresholds w, < 400

obs

and Wy

< +o00 such that the cumulative distribution functions F,, (1) x,=2 and Fy,,|p,=1,X, =z

are continuous and strictly increasing on (w,, +00) and (WS>, +00), respectively.

(v) (Normalization.) There exists a known realisation T of X,, withy(1,z) = 0and o(1,z) = 1.

For each realisation x of X, define

q1

1 =
L2) = 5 C1 X, =)

€ (0, 00).

Fix the following sequences

A9 19k AWy _g g1

xT

and, for any x, define the x-specific re-indexed tails

1k — C(L@ (1 _ (k))’ 1 — zk) . C(l,x) (1 _ ~(k)).

T T 1, 7) . T (1, )

ZWe focus on the case of unbounded supports. The bounded-support case follows analogously, with the technical
modifications highlighted in Appendix 11



Then,
Qun|Dn=1,Xp=z (Tagk)) — Qun|Dp=1,Xp=2(Tz

o(l,z) = lim
k=too an|Dn:1,Xn:9’c(7—f(k)) — Qun|Dp=1,%,=7(Tz

and

y(lw) = kl—1>rfoo anIDn=1,Xn=m(Tm(k)) —o(l,z) ananzl,anf(Ték)) .

Hence y(1,x) and (1, x) are identified (under the location and scale normalizations at T).

Proof. Fix arealisation z of X,,. For any threshold w, Bayes’ rule gives

Pr(w,(1) >w | X, =x) Pr(D, =1]| X,, =z, w,(1) > w)

Pr(w, > w | Dy = 1, X, = z) = Pr(D, = 1| X, = z)

Letting w — +o00 and using (iii),
Pr(w, >w | D, =1,X,=2) ~ ¢(1,z) Pr(w,(1) >w | X, =), (w — 400), (44)

where ¢(1,z) = 0,00) and “~” denotes that the ratio of the two sides converges

q
o=y € (
to 1.

Write S 5 (w) = Su, 1)) x,=2(w) and S, (w) = Sy, |p,=1,x,==(w). Then, (@#4) reads as
Sy(w) ~ ¢(1,2) 5] . (w) (w — 400). (45)

By (ii), both right endpoints are +oo; by (iv), the upper-tail CDFs F,, (1)/x,=» and Fy,,|p,=1 X,==
are continuous and strictly increasing beyond finite thresholds, so their tail quantile maps are the
ordinary inverses on the corresponding index ranges near 1. Hence, by Lemma 2]

1—7
c(l,z)

an\Dnzl,Xn:z(T) = an(1)|Xn=x<1 - + Ox(l - T)) (7— — 1)7 (46)

where 0,(1 —7)/(1—7) > 0as7T — 1.

From w,(1) = y(1,z) + o(1,2)€,(1) and Assumption (i), for all u € (0, 1),
an(1)|Xn:$(u) = y<17 .CL’) + 0(17x)Qen(1) (u)

Plugging into (46)) gives

1—171

c(1,x)

Qui | Dt xoa(T) = y(1,7) + a(l,x)Q€n(1)<1 - T 0,(1 —r)) (r—=1). @7

12



Scale. Evaluate @7) at 7 = 7 and 7 = 7#:

_, )
Qw”|D":17X":$ (Tflgk)) = y<]‘7 SL’) + U(lv‘r)QEn(l)<l N 1( Z) + Ox(l - Tz(k))>v

Qunl Di=1,x,=2 (71) yﬂ#ﬂ+00wﬂ2<( L o Al—}“»,

Take the difference between the two equations in (48):

(k) ~(k) -
—~o(1,2) [ Qeuc(1 = 57 0u(1 = 7)) = Q1 — Sy +oull = 7)) ] (k = +0).

(49)
Repeat analogous steps for 7 = Ta-Ek) and 7 = %f(k) and use the normalisations in (v):
N @wn|Dn:1,XM<rﬁ’“>> — Quaipu=t xo=a(7)
:[Q n(l )< C( ) +og(1 — T( ))> — Qeua )(1 - 10(17;;) +0z(1 — %Ek)>)] (k — +00).
(50)
By the definition of 7, *) and %;,gk),
17 17 17 17
1-— =1- = 1-— = 1- =
c(1,x) c(1, ) c(1,x) c(1, )
Therefore, (49) and (50) can be written as
O N
AP =o(1,2) |:Q€n(1)<1 - 10(13) +0,(1 =7 )) Qe,1 ( - lc( a:«) +o.(1 - ggk))ﬂ’
(k) 1) (k) ) - (k) (k= +o0).
AP = [Qu(1— 55 +0x(1 = 1)) = Q1 -~ 5y + 01— 7)),
(51

Take the ratio between the two equations in (51). (iv) implies that (e, (1) is continuous and strictly

increasing near 1. Since Ték) =1-—2"and %ék) = 1 — 37" are distinct for all k, the denominator of

(k) Lk ))

the ratio is nonzero for all large k. By continuity and 0,(1 — 72 ), 0z(1 — — 0,

G ) .
Q1= S + 0a(1 - Té’f))) ~ Qo1 - 5 + 01— 7))
lim =

oo NG = .
o Q€n(1)<1 - lc(l,n%) +o0z(1 — 7'* )) Qe, 1 ( — 1( 5 + 0z(1 —7'E ))>

Therefore,
~(k))

(k)
U(l,.’L‘) — lim ananzl,Xn:CC(TCC ) anan 1,Xp= ;c(

k k’ ’
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Location. Evaluate @7) at 7 = 7.°) and, with # = 7, at 7 = Ték)l

(k)
QwﬂD":LX":L‘ (Tﬂgk)) - y<17 x) ( )Qen < ( 3:) + O:Jc(l - Tx(k))>7

(k) 1 () (k — +00),
Qun | Dy=1,X,=7 (Ti" ) - QEn(l)<1 - c(17§;) +o05(1 =13 )>>
(52)
where we use the normalisations in (v). By the definition of ),
1— 7 1—+®
1— =1- .
c(1,x) c(1,7)
Therefore, can be written as
Qua1pam1.x=2 () = y(L,2) + o (L, >@en (1= o= 7)),
& . N (k — +00).
Qun | DX, (12) = Qenm(l - LAy +oa(1— )>>,
(53)

Subtracting the two equations in (53)):

Qun | Dp=1,Xn=2 (T(k)) —o(1, x)QwﬂDn:l Xp=7 (Tg%k))

=y(l,z)+o(1, ) Qe (1) 1—1_7 +0m(1—7}£k)) — Qe 1 Clz —1—090(1 T( )| (k — +o0).
(1,7) ( )

Also note that o, (1 — T;,(;k)) — 0 and oz(1 — Tg-Ek)) — 0 as k — +oo. Therefore, by continuity of

(e, (1) near 1 under Assumption (iv),

Qe (1 u+0$1—7'(k) —Qc 1 u—l—ojl—Tj(;k) =o(1), uw=1-— - k — +o0
n(1) z n(1) (1, 7)
Therefore,
lim [an|Dn:1,Xn:x(7-;§k)) - 0-(17$)an\Dnzl,ani(Ti(k))] = y(l,l’)
k—+o00
as desired. [l

C Extension to Search Models

The quantile approach in Proposition [13]can be used to identify key parameters in equilibrium wage
equations with inherent conditional heteroskedasticity, as in standard search models. For example,

consider a specification in the spirit of Bagger et al.| (2014)), where the potential wage of worker n at
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time ¢ in firm d € D is

W t(d) = wy? HlTod ent(d) + (1 —w)(1—=96)Uy (Hmt), (54)

n,t

with 0 < w < 1 the worker’s bargaining weight, 7; > 0 firm d’s productivity, oy € [0,1) the
elasticity of wages with respect to 4, and ¢ € (0, 1) the discount factor. Here H,,; denotes human

capital at time ¢ with support H;, and

Ud(Hn,t> =z + 5Een7t~F€n,t [f(S(Hn,ta En,ty; W, Ad, Vd, 5))] )

is the flow value of non-market time, where 2 is the flow value of unemployment; S(-;w, avg, V4, 9)
is the match—surplus function; f(-) is a functional of the surplus; and the expectation is taken with

respect to the shock vector ¢, ; with distribution F, ,. The index d on U, reflects the dependence of

n,t*
S on (ag,7a). As is standard, we treat § and w as known. The parameters to be identified are v, ag,
and z. The functions f and S are known up to (4, g, Fe, ).

We consider two cases: (1) H, ; is observed (or unobserved with known distribution and support);

(2) H,, ; 1s unobserved with unknown distribution and support.

Case 1: H,,; is Observed (or Unobserved with Known Distribution and Support). For simplic-

ity, we focus on the case of potential and observed selected wages with unbounded supports. The
bounded-support case follows analogously—together with the possibility of identifying the extreme
support endpoints—with the technical modifications highlighted in Appendix [B.2]

Proposition Corollary [/, and Corollary |8 stated below follow immediately from Proposi-
tion (13|and Corollary |1} Specifically, for Proposition replace X,, with H,, ; and define

y(d Hug) = (1= w)(1 = 8) Ug(Hayg),  o(d, Hoy) = wr§ H) 7%

n,t

then Proposition identifies y(d, H,) and o(d, H, ;). For Corollary once y(d, H,,) and
o(d, Hy, ;) are identified, the joint distribution of the shock vector, F, ,, is identified by Corollary

For Corollary |8 once y(d, H, ), o(d, H,.), and F,

n,t?

are identified, then the parameters o, 74, and

n,t

z follow directly.

Proposition 14 (Identification of y(d, H,,;) and o(d, H,,;)). For each firm d € D and periodt > 1,

assume:
(i) (Exogeneity.) €, (d) is independent of H, ;.
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(ii) (Supports.) For each h € H,,

sup{u : Pr(w,(d) <u| H,y = h) < 1} = +o0,
sup{u : Pr(w,; <u|D,;=d, H,; = h) <1} = +o0,

0< PT(D,—L,t =d | Hn,t = h) S 1.
(iii) (Tail Limit.) There exists a constant q; 4 € (0, 1] such that for every h € H,,

lim Pr(D,; =d| Hyy = h, wy(d) > w) = gq.

w——+00

(iv) (Tail Regularity.) For each h € H,, there exist thresholds wy, ;4 < +00 and W, < +00 such
that the cumulative distribution functions F,, ,(a)\u, ,=n and Fy,, D, ,=d,H, ,~h Gre cOntinuous

and strictly increasing on (wp .4, +00) and (Wi, +00), respectively.
(v) (Normalization.) There exists a known h € H, with y(d, h) = 0 and o(d, h) = 1.
Then, y(d,h) and o(d, h) are identified for each d € D, h € H,, and t > 1.

Corollary 7 (Identification of F, ,). Let F¢, , denote the joint CDF of €, and I, ,q) the marginal
CDF of €, +(d). Let S., ,(a) denote the survival function of €, ;(d). Maintain Assumptions (i) to (v) of
Proposition |14} implying that y(d, h) and o(d, h) are identified for each d € D, h € H,, and t > 1.
For each period t > 1.

(a) (Marginal Identification.) For each firm d € D, assume €, .(d) belongs to a known parametric
family indexed by the p, 4 x 1 vector or parameters i 4 € M; 4 C RPt4. Fix any h € ‘H, and

choose p; q4+1 distinct large thresholds 0 < wo < wy < -+ < wy, ,. Define the function

w1 —y(d,h wp, 4 —y(d,h)
Sen,t(d) < 10(27(;1) ); ﬂt,d) Sen,t(d) < Pt;l(th) ; ,Ut,d> )

Dy gn: Mg — R Dy g (phe,a) 1=< s
Sens(d) <—w°g_(3,(f)’h) ; Mt,d) Sene(d) (—woo_(Zf,f)’h) ; Nt,d)

If ®; 41, is injective, then the parameter [i 4 1S identified.

(b) (Joint Identification.) If the shocks {€, (d)}aep are mutually independent across d € D,

then the joint distribution of €, +(d) is identified as the product of the identified marginals.

24Note that our identification result in Corollary [7|is established period by period; accordingly, the shocks €n,t are
allowed to be correlated across periods.
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Alternatively, if a copula C,,, is specified so that

Feo,(vi, o) = Cul(Fo sy (vis )+ Fo wop (0 o)) V(015 vypp) € RIP

and the copula parameter i, is known, then the joint distribution is identified via the identified
marginals and C,,,. Absent further restrictions on the dependence among {€,(d)}qep, the

joint CDF is partially identified by the sharp Fréchet—Hoffding bounds:

maX{ZFen,t(d)(Ud§Ut,d) —(ID| - 1), 0} < Fepovn - vp) < min B o) (Vas fiea)

V(vi,...,vp|) € R

Corollary 8 (Identification of o, 4, and z). Assume that y(d, h) and o(d, h) are identified for each
d € D, for every realisation h of H,, ;, and for some period t > 1 (see Proposition |I4|for sufficient

conditions). Assume also that the joint distribution of the shock vector, F,_ ., is identified for the

n,t?

same period t > 1 (see Corollary[/)for sufficient conditions). Then the parameters o, Va, and z are

identified for each d € D.

Proof. Step 1: Identification of g from o(d, H,, ;). For any h, h' in H,,

O’(d, h) B w’ycclyd hl—ad B ﬁ 1—ay
O’(d, h’) - w%(;d (h’) l—ag — \ }/ :

Taking logarithms and rearranging,

_ log (o(d,h)/o(d, 1))
log(h/h)

g =

Note that « is identified without relying on the scale normalization o(d, k) = 1 in Assumption (v)
of Proposition because the ratio o(d, h)/o(d, 1) is identified without any such normalization,
as shown in the proof of Proposition [[3] Moreover, to identify a; we do not need to know the
distribution of €, ¢, F,

€En,t*

Step 2: Identification of 4 from o(d, H, ;). For any h € H;, we have

o(d,h) = w5t h! e,

Solving for v, yields
Ya = (o(d, h)w™* had’l)l/ad.
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Note that, unlike o, the identification of v, relies on knowing the level o (d, h) and therefore depends
on the scale normalization o(d, h) = 1 in Assumption (v) of Proposition Moreover, as with ay,

to identify 4 we do not need to know the distribution of ¢, ;, F

€n,t*

Step 3: Identification of z from y(d, H,,;) and F,

€n,t*

For any h € H;, we have

y(d,h) = (1=8)(1—w)|z + 6B r, , [F(S(h enss w,ad,'yd,é))”.

Solving for 2 yields

__ yld,h)
(1=6)(1—w)

- (SEen,then’t [f(S(h, €nt; W, Ad, Vd, 5))} :

Note that the identification of z relies on knowing the level y(d, h) and therefore depends on the
location normalization y(d, 71) = 0 in Assumption (v) of Proposition Moreover, unlike oy and

V4, to identify 2 we need to know the distribution of €, ;, F O]

€n,t*

Case 1: Alternative Proof. Rather than relying on Proposition we can use a quantile-based

approach that skips the nonparametric identification of y(d, H,,;) and o(d, H,, ;) as intermediate steps
and instead leverages directly the parametric structure of the wage equation in (54). We show how
this approach works to identify «; and -y, in Proposition[I5] We provide a more detailed comparison

between the two approaches at the end of Proposition [[5]and its proof. Define

y(d, Hyy) := (1 —w)(1 = 6) Ug(H,y), M, 4(d) == wAS H, 7 €4(d).

n,t
Proposition 15 (Identification of oy and ;). For each firm d € D and some period t > 1, assume:

(i) (Unbounded Upper Tail of Human Capital.) The upper tail of human capital H,; is un-
bounded. That is,

llm QIOan,tan,t:d<p) - +OO
p—1

(ii) (Quantile Reminder Negligible Relative to Human Capital.) For each p € (0,1), define the

conditional quantile reminder

Riq(p) := Qiogwni|Dni=d(P) — {logw + aglog g + (1 — ag) Qloan,tmn,t:d(p)}- (55)

Then, the contribution of this reminder to the upper observed, selected wages wy,; | D, = d

18



grows strictly more slowly than the contribution of human capital H, ;. That is,

y Rya(p)
11m
pg)l QIOan t|Dnt d(p)

=0. (56)

(iii) (Normalisation.) The upper tail of the remainder R; 4(p) has a known finite limit. That is,

lim Ry 4(p) = L, (57)

and Ly g4 is known.

Assume in addition that H,,; > 0, w,;+ > 0, and €, +(d) > 0 almost surely, so that all logarithms

above are well defined. Then, for each d € D, the parameters oy and 7y, are identified.

Proof. Step 1: Identification of ay. Fix a firm d € D. Using the structure of the wage equation,

log wn ,(d) = log M, (d) + log (1 + y;j;f@?) . (58)
Using the definition of M, ;(d),
log M, +(d) = logw + aglogvqs + (1 — ag) log H,, + + log €, +(d). (59)
Therefore, substituting (58) in (59),

log wy, +(d) = logw + aglogya + (1 — ag) log Hyp + log €,,.4(d) + log (1 4 HE” t))> (60)

Now condition on D,,; = d and apply the conditional quantile operator Q.p, ,—a(p) to both sides of

(60). Using only that adding a constant shifts quantiles, we get

) (p). (61)

Qlogwn,an,t:d(p) = logw + aglogyq + Q )| Dno—d
n,t—

(1—aq) log Hy 1 +log €n, ¢ (d)+log (14 ]$/1 ?3

Define the conditional quantile remainder: R, 4(p)
Rtvd(p) = QIngn,t|Dn,t:d(p) - logw + Oéd ]'Og ,yd + (]‘ - Ofd) Qlog Hn,t|Dn,t=d(p):| . (62)

Plug-in (61)) into (62)):

R =logw + a4lo +
t’d(p) & d 108 7d Q(l ag)log Hy, 1 +1og €r, ¢ (d)+log(1+

B (p)

My (d) ) 1Prt=d

y(d,Hn.t)
My
logw + ag0g 4 + (1 = ) Quog |0, =alp)]-
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Thus,

Riq(p) = Q 4.H
’ ( ) (1fad)logHn,tJrlogen,t(d)+log(1+y§4;t?c’lt))) |Dy,t=d

and

Qlogwn,t\Dn,t:d(p) = 1ng + g log Yd + (1 - ad) Qloan,t|Dn,t:d<p) + Rt,d(p>'

Fix any p € (0, 1) and define
Aw (p) = Quogwni|Dni=d(P) = Quogw, ¢ Dni=d(D),

AH<p) = QlOanJ'Dn,t:d(p) - QlOan7t|Dn7t:d(p>7

and

AR(p) = Rt,d(p) - Rt,d(ﬁ)'

Subtracting (63)) evaluated at p and at p yields, for all p € (0, 1),

Aw(p) = (1 = aq) Au(p) + Ar(p).
By Assumption (i),
Il)l*rg Qlog Hn,t|Dn,t=d<p) = +00,

and hence

lim Ay (p) = +oo.
p—1

Assumption (ii) states that

(p) - (1 - ad) Qloan,t\Dn,t:d(p)7

R
lim a(p) — 0.
p_>1 QlOan’”Dn’t:d(p)
By combining (63) and (66), we can show that
A
lim 220 _
p=1 Ap(p)
Indeed, write
~ Ry,a(p) o Ry,a(P)
AR(p) _ Rt,d(p) — Rt,d(p) _ Qloan’ﬂDn,t:d(p) Qloanyt\Dnyt:d(p)
Au(p)  Qiog Hyo|Dp—d(P) — Qlog Hot|Dy.i—d (D) 1— Qiog Hy, 4| Dy =d(P)

Qlog H,, 1Dy 1 =d(P)

20
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As p — 1, Assumptions (i) and (ii) imply

Ry.a(p)
Qlog Hn,t|Dn,t=d(p)

Qlog Hi ¢ | Dp.1=d(D)
Qlog Hn,t|Dn,t:d(p)

Ry q(p)
Qlog Hn,t\Dn,tzd(P)

— 0,

— 0,

— 0,

so the numerator of (68)) converges to 0 — 0 = 0 and the denominator to 1 — 0 = 1, which yields

©7.
Now divide both sides of by Ay (p):

: (69)

~—

Taking limits as p — 1 on both sides of (69) and using (67)), we obtain

o A® gy A
25 A () ‘}m{“ d”AH(p)} e

This identifies 1 — ay and hence a,. Note that we do not use the normalisation in Assumption (iv)
to identify ay. Assumption (iv) will be used below to identify ;.

Step 2: Identification of 4. Rearranging (63) gives

Rya(p) = Qlogwn,twn,t:d(p) — (1 —aq) QlogHmt\Dn,t:d(p) - (logw + aglog ’Yd)-
Taking limits as p — 1 on both sides and using the tail normalisation (57)), we obtain
Lig= })1_13} Riq(p) = 11?1_13} {Qlogwmt\Dn,t:d(p) — (1 — aq) Quog Hn,t|Dn,t:d(p)} — (logw + aglog~a).
Hence,

logw + aqlogvy = })l_rg {Qlogwn,tmn,t:d(p) — (I = aq) Qiog Hn,t|Dn,t:d(p)} — Lia.
Solving for o log 4 yields

410874 = 1m0 { Quogu, 11D, 1=a(P) = (1= €0) Quog D =a(p) | = Lia = logeo,

so that

1 .
Yd = exp( [}}_fg {Qlogwn,t\Dn,tzd(p) - (1 - OCd) Qlog Hn,tan,tZd(p)} - Lt,d — log W}) .

Qyq

The right-hand side is identified from the conditional joint distribution of (w,, ¢+, H,+) given D,,; =

21



d (which determines the limit of Qioguw, D, ;=a(P) — (1 — @4)Qiog 1, 11D, ,=a(P) a5 p — 1), the
known constant L; 4, the known bargaining parameter w, and the already identified ay. Thus, v, is

identified. ]

Remark. We now compare the identification approach of Proposition Corollary [/, and Corol-
lary [§] (hereafter, the “first approach”) with the identification approach of Proposition [I3] (hereafter,
the “second approach’) for recovering o, and 4. To recap, the first approach identifies the scale
function o(d, H,,;) from the upper tail of the observed, selected wage distribution w,, ; conditional
on (D,., H, ). Given the structural relation o(d, H,,;) = w~3" Hnl,t_ad, ag 1s then identified from
ratios of o(d, h) at different values of h, which do not depend on any normalisation for o(d, -). The
parameter 7, is identified from the level of o(d, h) at some h and therefore requires a normalisation,
for example o(d, h) = 1 for some h.

The second approach does not pass through the intermediate identification of o(d, H, ), but

instead works directly with the log wage equation
log wy, +(d) = logw + aglogya + (1 — ag4) log H,, ; + error,

and studies conditional upper quantiles of logw, ; and log H,,; given D, ; = d. Under Assump-

tions (i)—(ii), we obtain as p — 1:

Qlogwn,ﬂDn,t:d(p) - lng + ay IOg Vd + (1 - ad) Qlog Hn,t|Dn,t=d(p> + O(Qlog Hn,t\Dn,tZd(p))v

so that differences in p and ratios of the form Ay (p)/A g (p) identify the slope 1 — oy without any
normalisation. The parameter v, is then recovered from an intercept—type tail normalisation on the
composite error term, encoded in Assumption (iii). In this sense, the second approach resembles an
asymptotic linear quantile regression of Qg w,, .| D, . (P) ON Qiog H,, .| D,,.. () in the upper tail: the slope
1 —ay is identified from the limiting ratio of quantile differences, while the intercept log w+ay log v4
is pinned down by a normalisation on the tail behaviour of the composite error.

Thus, both approaches are fundamentally based on upper—tail identification. The first approach
looks at the upper tail of w,,; conditional on (H,, D, ), while the second approach looks at the
upper tail of log w,, , and log H,, ; conditional on D, ;. Moreover, in both approaches, « is identified
via a slope argument, while v, requires a normalisation condition.

In the first approach, the key restriction is a tail limit condition (Assumption (iii) of Proposi-

tion [[4)), which requires that, conditional on human capital H,,,, the probability of working at firm
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d given very high potential wages w,, ;(d) converges to a firm—specific constant ¢; 4 as w — +00.
This stabilisation of selection in the upper tail is what allows the tail behaviour of the potential wage
distribution to be recovered from the observed, selected wages. In the second approach, the key
restrictions is a dominance condition (Assumptions (ii) of Proposition [15)) on the quantile reminder
which produces an asymptotically linear relation between Qiog w, .|, ,—a(P) and Qiog 1, Dy, =d(P)

as p — 1, from which the slope and intercept can be identified.

Case 2: H,,; is Unobserved with Unknown Distribution and Support. We proceed in two steps.

First, in Proposition |16} to account for the fact that H,; is unknown, we work in the human-capital

rank space by mapping H,, , to its quantile (percentile) index via its CDF:
Upt = FHn’t(Hm).
We then identify the rank-mapped primitives
y°(d, Uny) = y(d, Fﬁit (Uns));  0°(d,Uny) = o(d, Fﬁi,t (Unt)),

defined on the support of U, ;, rather than on the support of /,, ;. Second, in Proposition|I0} assuming
that ¢, , is known and that two values of H,, h, and hy, corresponding to the values u, and w; of

U, . are known, we identify oy, 4, and z.

Proposition 16 (Identification of y°(d, U, ) and 0°(d, U,)). Given d € D andt > 1, let Uy 4 C
(0, 1) be the set of realisations u of Uy, ; such that Pr(D,,; = d | U, = u) > 0. For each firm d € D

and period t > 1, assume:

(i) (Exogeneity.) €, (d) is independent of U, ;.
(ii) (Supports.) For each u € U, 4,

sup{w : Pr(w,(d) < w | Ups = u) < 1} = 400,

sup{w : Pr(w,; <w | Dy =d, U, = u) < 1} = +o0.
(iii) (Tail Limit.) There exists an (unknown) constant q; 4 € (0, 1] such that for every u € U 4,

lim Pr(Dnvt =d | Upt = u, wy(d) > w) = qt,d-

w—-+00

(iv) (Tail Regularity.) For each uw € U4, there exist (unknown) thresholds w, .4 < —+o0o and

wgffd < +oo such that the cumulative distribution functions F,, (v, ,—u and Fy,, D, ,=d,Up ,=u
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. . . . obs .
are continuous and strictly increasing on (wy 4, +00) and (wy} 4, +00), respectively.

(v) (Normalisation.) There exists a known u € Uy q with y°(d,u) = 0 and 0°(d, u) = 1.
Then, the functions y°(d,u) and 0°(d, u) are identified for each u € Uy 4 and d € D.

Proof. The claim is an immediate consequence of Proposition [13] after a change of conditioning
variable from the latent value H,,; to its rank U, ; = Fpy,, (H,+). Note that this reparametrisation
is without loss, because by the probability integral transform, U,, ; is uniformly distributed on (0, 1),
and conditioning on H,, ; is equivalent to conditioning on U, ;. Since the support of /1, ; is unknown,
identification can only be stated for the rank—indexed objects y°(d, u) and ¢°(d, u), rather than for

y(d,h) and o(d, h) at the unknown levels h. O

Corollary 9 (Identification of F ,). Let I, , denote the joint CDF of ¢, ; and I, ,(q) the marginal

n,t
CDF of €,4(d). Let S, ) denote the survival function of e, ,(d). Maintain Assumptions (i) to (v)
of Proposition (16| implying that y°(d,w) and c°(d,w) are identified for each d € D, u € U, 4, and

t > 1. For each periodt > 1:

(a) (Marginal Identification.) For each firm d € D, assume ¢, (d) belongs to a known parametric
family indexed by the p; 4 X 1 vector or parameters |, g € M; 4 C RP4. Fix any u € Uy 4 and

choose p; q+1 distinct large thresholds 0 < wo < wy < - -+ < wy, ,. Define the function

w1 —y°(d,u Wpy —y°(d,u)
Sene(d) (#(u)) ut,d) Sent(d) (— o) ”‘W)
Py au: Mya — R, q)tvdv“(ut’d) = wo—y°(d,u) T wo—y°(d,u) '
Seni(d) <W Mud) Sww)( o (du) ?“'%d)

If @ 4., is injective, then the parameter [u 4 1S identified.

(b) (Joint Identification.) If the shocks {€, (d)}aep are mutually independent across d € D,
then the joint distribution of €, +(d) is identified as the product of the identified marginals.

Alternatively, if a copula C,,, is specified so that

Feo,(v1, o) = Cul(Fo sy (01 1) Fo sop (0 o))V (01, vypp) € RIP

and the copula parameter i, is known, then the joint distribution is identified via the identified

marginals and C,,,. Absent further restrictions on the dependence among {€,(d)}q4ep, the
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joint CDF is partially identified by the sharp Fréchet—Hoffding bounds:

maX{ > Fep (Ve pea) — (D] = 1), 0} < Fepvn - vp) < min B o) (Vs fina)
deD
V(’Ul, e ,U‘D|) S RP!

Corollary 10 (Identification of «y, 4, and z). For each firm d € D and for some period t > 1,

assume that:

(i) y°(d,u) and 0°(d, u) are identified for each u € Uy 4 (see Proposition[16|for sufficient condi-

tions).
(ii) The distribution F,, , of €, is identified (see Corollary |?] for sufficient conditions).

(iii) There exist two distinct ranks u, # wy, in Uy g such that the corresponding human-capital levels

he == F}}it (uq) and hy = F I}j,t (up) are known to the researcher.
Then oy, g, and z are identified for each d € D.

Proof. Step 1: Identification of aq from 0°(d, U, ;). Recall that

o°(d,u) = o(d, Fp! () = wry? (Fp.,(u)) e,

n,t

Pick the two ranks u, # w, and their corresponding levels h, = ngt (uq) and hy = F}}:t(ub).
Then

0°(d,ug)  wygthy % (ha> l—aq

O‘O(d, ub) w ,ygtd hblfad hb .

Taking logarithms and rearranging yields

log (O’O(d, uq)/o°(d, ub))
log(ha/hs)

Qg = —

Hence, given knowledge of the two ranks u,, u; and their corresponding levels h,, hy, a4 is identified.

Step 2: Identify 4 from 0°(d, U, ;). Using any anchored pair (u., h.) with x € {a, b},

O'O(d7u*) >l/ad

1—
why d

o°(d,u.) = wygth, M = %z:(

which identifies ,.

Step 3: Identify z from y°(d, U, ) and F., ,. Pick any anchored pair (u., h,) with * € {a,b}. Since

y°(d,u.) = y(d, hy) is identified and (o, 74) are now known, while F , is known by assumption,
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z 1s identified as

_ yo(d,uy) |
2z = ) — 5Een,t~FEn7t[f(S(h*, En.t; W, Oy Vs 5))}

D Omitted Proofs

Proof of Proposition 3, Fix a realisation x of X,,. For any threshold w, Bayes’ rule gives

Pr(w,(1) >w | X,, =) Pr(D,=1| X, =z, w,(1) > w)

Letting w — +o0 and using (iii),
Pr(w, >w | D, =1,X, =2) ~ ¢(1,2) Pr(w,(1) >w | X, = z), (w = +o0),  (70)

where c(1, ) = m € (0, 00) and “~” denotes that the ratio of the two sides converges

to 1.
Write S, (w) = Su, (1)) Xn=2(w) and Sy(w) = Sy, |p,=1,x,=2(w). Then, reads as

Se(w) ~ c(1,2) S (w) (w — 400). (71)

By (i1), both right endpoints are +oo; by (iv), the upper-tail CDFs F, (1)x,= and Fy,,|p,=1 X,==
are continuous and strictly increasing beyond finite thresholds, so their tail quantile maps are the

ordinary inverses on the corresponding index ranges near 1. Hence, by Lemma 2]

1 —
Qua e o=e(7) = Quuaxoe(1= Sy + 0:(1-7)) (oD,

where 0,(1 —7)/(1—7) = 0asT — 1.

From w, (1) = y(1,z) + €,(1) and Assumption (i), for all u € (0,1),

Qu,n(1) Xn=2(v) = Yy(1,2) + Qc,1)(u).

Plugging into (72)) gives

1—7
c(1, )

Qu, | Du=1,x,=2(T) = y(1,2) + Qen(l)(l — + 0y(1 — 7')) (= 1). (73)
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Let {Ték)}kzl C (0, 1) with 7™ 5 1. Define

1-70 = (1—7). (74)

Since ¢(1,x),¢(1,z) € (0,00), we have H) € (0,1) for all large k and 75 ™) 5 1 as k — +00. Note

also that by (74), 1 — 7" = (¢(1, ) /e(1,2))(1 =¥, s0 1 — * and 1 — 7" are of the same order.

Evaluate (73) at 7 = ngk) and, withz = T, at 7 = Ték):

_, k)
Qw”‘D":LXn:m (Tﬂl(fk)) y(17 .ﬁIZ’) + QEn(l)(l o 1( z) + Ox(l - Tg(;k))>7

) (k = +o00).  (75)
Quy | Dy=1,X,=7 (Ték)) y(1,7) + Qc, (1 B 1(1 5t oa(l - T—(k))>,

By construction (74)),

1 — 7 1— 7
1— -1z
c(1,z) c(1,7)

Therefore, (75]) can be written as

an | Dn=1,Xp=x (Ték))

Qu, | D=1,X,=% (Ték))

y(1,2) + Qun(1— S + 0u(1 - 7)),

(k= +00).  (76)
ML@*4%m(1—HF)+oA1—A@D

Also note that o, (1 — ngk)) — 0 and o0z(1 — Ték)) — 0 as k — +oo. Therefore, by continuity of

(e, (1) near 1 under Assumption (iv),

Qen(1)<u+0x(1 _Tagk))> _Qﬁn(l)(u_'_oi(l —T;zgk))) =o(1), wi=1-— 10(_1—:;) (k — +00).

Subtracting the two equations in and using the normalisation y(1,z) = 0 from Assumption (v):

lim [an|Dn:1,Xn:x(T;£k)) - an|Dn:1,Xn:i(7_5£k))} = ?/(171‘)-

k—+o00

This proves the claim. [

*

Lemma 2 (Survival-to-quantile index inversion). Under (ii) and (iv), for fixed realisation x of X,

and some c(1,z) € (0, 00),

Swn|Dn:17Xn:fD<w) ~ 0(17 x) Swn(l)‘anl'C(w) (w — +OO)7 (77)
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if and only if

Quipsmixe=s(7) = Quaix=(l = (s +o1=7) (T 1, 79
where 0,(1 —7)/(1—7) = 0asT — 1.

Proof. (=) Assume

Sz(w) ~ ¢(1,2) S . (w) (w — +00). (79)

Fix 7 — 1 and define

Wy = an\Dn:LXn:m (T) (80)

By (ii), wops(x) = 400, s0 w, — +o0o as 7 — 1. For 7 close enough to 1, w; lies in the tail region

where (iv) applies; thus, by continuity on the tail and (80),

Fwn|Dn:1,Xn:x(wT) =T,
which is equivalent to
Sp(w,) =1—17. (81)
From evaluated at w = w, and (81I)), we get

1 _
Sia(w,) = c(l—xT) Yo (l—7) (r—1), (82)

where 0,(1 —7)/(1 —7) - 0asT — 1.

Define
Ur = Fy, 1)) x,=2(W07) = 1 = S12(w7). (83)
By (82)-(83).
u7=1—(:1(1_—’;+0z(1—7) (r —1). (84)

Since u, — 1, for 7 close enough to 1 we have u, in the tail index range where F, (1)/x,= 18

invertible; combining this with (§3)),

Wr = (Fwn(l)\Xn:a:)_l<u‘r) = an(1)|Xn:m(u7') (T — 1) (85)
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Substituting (84)) into (B5)) yields

Wy = an(1)|Xn=:E<1 — C(l—,;-) + 0$(1 — T)) (7' — 1)

Combining (86) with (80) gives (78).
(<) Conversely, assume

an|Dn:1,Xn:x(7—) = an(1)|Xn:x<1 - (:(1—7; + 0:0(1 - T)) (T - 1)

Fix 7 — 1 and set
1—7
=1- (1 —7).
u c(l,x)+0( 7)

Then, (87) becomes
Qun Dn=1,Xp=2(T) = Quo, (1) X =a{Ur) (T —=1).
Since u, — 1, it lies in the tail index range where (iv) yields invertibility, so
Fop ) xn=a Qua()X,=2(Ur)) = us.

Applying F, 1)|x,. = to both sides of (89) and using (88)-(0) gives

1—171
c(1, )

Fwn(1)\anx(an|Dn=1,Xn=x(T)) =1-

Equivalently, in survival notation,

1—71
c(1,2)

Sl,x(anan:LXn::B(T)) = + Ox(l — 7') (7‘ — 1).

Moreover, by continuity on the tail under (iv),

S$(an|Dn:1,Xn:x(T)) =1-7

Define

Wr = anan:LXn:‘T(T)

Then, by tail continuity under (iv),

Se(wy;) =1—1.
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From (92)), (93)), and (94), with (1) == 0,(1 — 7)/(1 — 7) — 0,

Se(wr) 1—7 1

Sy .(w;) c};;) (1+ c(1, )ry(7)) =c(Lz) 1+ (1, 2)r (1)

— (L 2){1+ (1)},

whence

Se(wr) ~ ¢(1,2) 8 .(w;) (1 —1).

Finally, since 7 — w, is increasing and unbounded, any sequence w — +4-o0c can be written as w,,
with 7 L — 1,

Sp(w) ~ ¢(1,2) 51 .(w) (w — 400),
which is (77). O

Proof of Corollary |I|, Part (a). Fix arealisation x of X,,. By Bayes’ rule, for any w € R,

Pr(D,=1]X, ==z, w,(1) > w)
Pr(D,=1]|X, =1) '

Swn|Du=1,X,=2 (W) = Suw, (1) x, =2 (W)
Using Assumption (iii) of Proposition 3]
S| Du=1,Xn=z(W) ~ c(1,2) Sy, )| x,=(w) (W — +00), (95)

where ¢(1,z) = ¢ /Pr(D,=1] X, =x) € (0,00). Take two thresholds wy,wy > 0 and let

min{w;, wy} — +oo. Dividing (93) at w = w; and w = w, gives

Su; = =z Sw =x
lim 21Du1Xuza(01) S iae(W) (96)

min{w1, w2 }—+o00 Swn|Dn:1,Xn:z (w2) Swn(l)‘Xn:x<w2)

By Assumption (i) of Proposition 3| w,(1) = y(1,z) + €,(1). Hence,
Suwn () xnez(W) = Pr(e,(1) > w —y(1,2)) = S, y(w — y(1, ). 97)

Substituting into (90)) yields

lim S| Dn=1,Xp=z(W1) _ Se, (w1 —y(1,z)) 98)
min{w1,ws }—-+o00 Swn|Dn:1,Xn:m(w2) Sen(l)(w2 —y(1, x))

Now choose p; +1 distinct large thresholds 0 < wy < wy < --- < wp, and form the p; ratios

Swn|Dn:1,Xn:x(wj)

Rj(z) = , J=L....p

Swn|Dn:1,Xn:z(wO)
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Applying with (wq, w2) = (w;, wy) for each j and letting all thresholds be large gives

) ) = ]-7-“7 )
Sen(1)<w0 _y(]-?x)mul) / b

so the observed vector (Ry(z), ..., R,(x)) converges to ®; (4 ) as defined in the statement. If &,

is injective, this limit uniquely determines 1, establishing identification.

]

Examples of Corollary [} Fix a realisation = of X,,. Let 0 < wy < w; < w be large thresholds
and define

Sw |Dp=1,X. :x(wj)
Rj(z) = Somn—r
! (x) Swn\Dn:LXn::c<wO) ’

j=12.

We now investigate whether the map from the shock parameters to the 2-vector (R;(z), Ro(z)) is
injective for three common parametric families.

Normal. ¢,(1) ~ N (u,0?), parameters (1,0 ). Let

_wy—y(Lw)—p
Zj— pu y

_wo—y(,z) —p

20

o
Then,

1oy _1-0(tAd)
() = 1—®(z) 1—®(z) =

wj—w0>0.

For fixed o, R;(x) is strictly decreasing in z; for fixed 2o, R;(x) is strictly decreasing in 1 /0 because
A; > 0and 1 — @ is strictly decreasing. Hence,

(1,0) — (Ru(w), Ra(z))

is injective.

Lognormal. ¢,(1) ~ LN(m, c?), parameters (m, o). We have

log(w;—y(1,z))—m o
R (x) 1—¢<%> 1— &z + A5 /0)
= 1— (I)<log(w07y(1,$))*M> B 1 — ®(2) ’
with
20 = log(wo — y(1,2)) — m’ Alog _ log(—wj — y(l,x)) > 0.
g J Wy — y(L :U)
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The same monotonicity logic as in the Normal case (now in A;Og) implies injectivity of
(m,0) — (Ri(z), Ra(x)).

Shifted Pareto. ¢,(1) ~ u + Par(o, tim), parameters (u, ) (the scale ¢, > 0 cancels). For
t > M + tmin,

t— —a w; —y 1’$ _ —«
Sm(l)(t;lt,a,tmin)=< M) — Rj(x):< j (1,2) M) ‘

min Wo — y(l,iﬁ) — U

Taking logs,

wj —y(l,z) —p .
log Ri(z) = —« 10g< J ), j=1,2.
(@) wo —y(L,x) — p

With two distinct j’s these give two equations in (1, ), each strictly monotone in . on the admissible

region wy — y(1,x) — p > 0, with common slope —a. Hence

(:U’7 Oé) — (R1<ZL’>, R2(x)>

is injective; t.,;, drops out of the ratios and is not identified.

Proof of Corollary[2l We show how to identify the conditional signal distribution
Pr(al, =a' | H,1 = h, D!, =d' e, =e), (99)

foreach1 <t < T — 1and (a', h,d,e) € A* x H x D' x &, where a' == (ay,...,a;) and d' :=
(di,...,d), such that Pr(H,; = h, D!, =d") > 0and Pr(e, =€ | H,1 = h, D, =d") > 0.
By Proposition [4{i) at time ¢ + 1,

Pr(e, =e, al, =a' | Hoy = h, D' =d'™),

is identified for each (e,a’) € € x A" and (h,d"™) € H x D! such that Pr(H,; = h, DIt =
d1) > 0, where d'*! = (dy, ds, ..., ds, diy1) = (d', di11). Using the law of total probability,

Pr(e, =e¢, a, =a' | Hyy = h, D}, =d")

= ZPr(en =e€, CLZ = at | Hn,l = h, ij_l = (dt, dt+1)) X Pr<Dn,t+1 = dt+1 | Hn71 = h, D,fl = dt)

dit1

Therefore

Pr(en =e, a,=a"|H,1=h, D= dt), (100)
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is identified.

By Proposition[4[i) at time ¢,
Pr(e, =e¢, a, ' =a"" | H,y = h, D!, =d")

is identified for each (e, a’™') € £ x A" and (h,d") € H x D' such that Pr(H,,; = h, D! =d') >
0, where d' := (dy,...,d;) and @' == (ay,...,a;1).
Therefore,

Pr(e, =e| H,1 =h, D!, =d"), (101)
is identified from

Pr(en =e|H,1=h, D!, = dt) = ZPr(en =e, at=a""| H,,=h, D! = dt).

at—1

In turn, by combining (100) and (10T}, the conditional distribution in (99) is identified via the

ratio
=al ] H,,=h, D! = dt)

n

| Hyy=h, Dt =df)

for any e € £ such that
Pr(e, =e| H,1=h, D, =d") >0.

Proof of Corollary[3l We show how to identify the conditional signal distribution

Pr(am = G4y Anpy1 = Qpi1, Qpiro2 = Qo | Hoy = hy, Dpy = di, Dy = divr, Dpgyo = digo, e = e),
(102)
foreach 1 < t < T — 3 and (as, asy1, sy, by ds, diy 1, diya,e) € A3 x H x D? x € such that
Pr(H,1 = h, Dyy =dy, Dyyy1 = di1, Do = diyo) > 0and Pr(e, = e | Hyy = h, Dy, =
d¢, Dyyy1 = dip1, Dyyyo = dt+2) > 0.
By Proposition [4{i) at time ¢ + 3,

Pr(en =e, alt?=a""?* | H,, =h, DI = dt+3),

is identified for each (e, a’™?) € € x A% and (h, d"™3) € H x D'*3 such that Pr(H,,; = h, D3 =
dt+3) > 0, where dt+3 = (dl, d2, Ce ,dtfl, dt, dt+1, dtJrQ, dt+3) = (dt_l, dt, dt+1, dt+2, dt+3) and
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a™? = (ay,ag,...,ai_1,0s, Q41 ar0) = (@', ag, agy1, azq2). Using the law of total probability,

Pr (en =€, Qnt = Q¢, Apt+1 = Qt41, Apt42 = AQg42 | Hn,l = h, Dn,t = dt, Dn,t+1 = dt+1; Dn,t+2 = dt+2)

= Z Z Pl"(en =6, afo = (atilaataat+17at+2) | Hn,l = h, D?g = (dtiladtadt+1>dt+27dt+3))

at=1 dt_17 dt+3

X PI"(D,tfl =d Dypis=diys | Hyy = h, Doy =dy, Dpyir = di1, Dypyo = dt+2)-

Therefore,

Pr(en =€, Qpt = Aty Qn+1 = A41, Apt+2 = Qg2 | Hy1=h, Dpy=dys, Dpiir = diy1, Dypgyo = dt+2),
(103)
is identified.

By Proposition[4{i) at time ¢ + 2,
Pr(e, =e, ai' =a"™" | H,y = h, D = d"*?),

is identified for each (e,a'™) € & x A" and (h,d"™®) € H x D'*? such that Pr(H,; =
h, Dz+2 = dt+2) > O, where dt+2 = (dl,d2,...,dt,dt+l,dt+2) = (dt_l,dt,dt+1,dt+2) and

t+1

at = (ay, ag, . .. a, aip1) = (a7 ag, agy).

Using the law of total probability,

Pr(en =€ | Hn,l =h, Dnﬂf = dy, Dn,t+1 = dt—l—l; Dn,t+2 = dt+2)

= Z ZPr(en =€, afj_l = at+1 | Hn71 = h/7 Dfl+2 = (dt_l, dt7 dt+17 dt+2)))

at+1 gt—1

X PI"(DZ_I =d! | Hyy = h, Dpy=dy, Dyyyr = diyr, Dypyyo = dt+2)-

Therefore,

Pl"(en =e€ | Hn,l = h, Dn,t = d, Dn,t+1 = d41, Dn,t+2 = dt+2)7 (104)

is identified.
In turn, by combining (T03)) and (104), the conditional distribution in (T02)) is identified via the

ratio

Pr(en =€, Qpt = Qt, Apt4+1 = Ap41, An42 = At42 ‘ Hn,l = h, Dn,t = dy, Dn,t+1 = dt+1, Dn7t+2 = dt+2)
Pr(en =e€ | Hn,l = h> Dn,t = dt> Dn,t+1 = dt+17 Dn,t+2 = dt+2)

9

for any e € £ such that

Pr(en =e| Hy1=h, Dpy=dy, Dyyi1 =div1, Dy = dt+2) > 0.
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Proof of Proposition |S, Step 1: Identification of a(h,d, e) and B(h,d,e). In this step, we identif
P y

the conditional probabilities
a(h,d,e) and B(h,d,e), (105)

for each (h,d,e) € H x D x & such that, for some 1 < ¢t < T — 3, Pr(a,; = a;, appi1 =
Q41 Qnite = Qo | Hyg = h, Dpy =d, Dpyn =d, Dypyio =d e, = e) is identified for each

(ar, apy1, ares) € A3

Proof. Fix (h,d,e) € Hx D x Eand 1 <t < T — 3 such that, forsome 1 <t < T — 3, Pr(anvt =
Aty Api+1 = Ap41, Qpi42 = Ap42 | Hn,l = h, Dn,t = d, Dn,t+1 = d, Dn,t+2 =d,e, = 6’) is
identified for each (ay, sy 1, asy3) € A°.

For any (a;, asy1, as,2) € A®, using the law of total probability and Assumption @ we can write

Pr(an,t = ¢, Qpt+1 = Ag41, An+2 = Ag42 ’ Hn,l =h, Dn,t =d, Dn,t+1 =d, Dn,t+2 =d, e, = 6)
a 32 a =a
_ Oé(h, d, 6)23:0 ]l{atH:a}(l o Oé(h, d, 6))3 > =0 Hawte }q(h, d, 6)

+ B(h,d, 6)23:0 ll{at+e:?z}<1 — B(h,d, 6))3723:0 1{a;4,=a} (1 —q(h.d, 6)),
(106)

where
Q(ha da 6) = Pr(en - 9_ | Hn,l - h: Dn,t = d, Dn,t+1 = d, Dn,t+2 - d7 €n = 6)-

Equation (T06) is a binomial mixture with two components and three trials. The left-hand side of
(T06)) is identified by assumption. Following Blischke| (1964, [1978), the weights and components
of the binomial mixture in (I06), {«(h,d,e), B(h,d,e),q(h,d, e)}, are identified if the number of
trials is greater than or equal to 2r — 1, where r is the number of mixture components. In our
case, r = 2. Therefore, we need to observe workers who remain in job d for at least 2r — 1 = 3
periods, which motivates our focus on periods ¢,¢ + 1,¢ + 2 in (I06). In particular, «(h,d, e) and
B(h,d, e) are identified without any labeling indeterminacy with respect to 6,,, using the restriction

a(h,d,e) > B(h,d,e) imposed by Assumption [4[(iii).

Step 2: Identification of the Prior and Posterior Beliefs. In the proof below, we identify the prior

Pr(0,=0| H,, = h,e, = e), (107)
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for each (h,e) € H x & such that, for some d € D, Pr(aml =a|H,1=h, Dys=4d, e, = e) is
identified and a(h, d, ) and 3(h, d, e) are identified.

In turn, the set of realizations of the posterior beliefs { P, ;} 7, is identified, since each P, ; can be
computed recursively as in equation (@) using {a(h, d, e), B(h,d,e), Pr(0, =0 | H,y = h, e, =
€)} (hd.e)eHxDxe-

Proof. Fix (h,d,e) € H x D x £ such that Pr(aml =a|H,1=h, Dy1=d, e, = e) is identified
and «(h, d, e) and 5(h,d, e) are identified.

Using the law of total probability and Assumption i) and (iii), we can write

Pr(an,l =a|Hy1=h, Dyy=d, e, = e)
= a(h,d, e)ﬂ{“:‘i}(l —a(h,d, e))ﬂ{a:g} p1(h,e)
+ Bh, d, €)= (1 = B(h,d, €)™ (1 = pi(h,e)),
where py(h,e) :== Pr(0,, =0 | H,1 = h,e, = ¢). In turn,

Pr(an,lza‘Hn,lzl—% Dn,1:d7 en:e)_ﬁ(h/7dve)

pi(h,e) = a(h,d.e)—B(h.d.e) ifa =a, (108)
’ Pr(an,1=a|Hn,1=h, Dn,1=d, en=e)—(1—B(h,d,e)) ifa—=a
B(h,d,e)—a(h,d,e) = a.

Therefore, py(h,e) is identified if Pr(a,1 = a | H,1 = h, D,1 = d, e, = e) is identified,
a(h,d,e) and B(h,d, e) are identified, and «(h, d, €) # ((h, d, e) by Assumption ().

Remark. Lett € {1,...,7 — 3} and (h,d,e) € H x D x . By Corollary 3]
Pr(an,t = Qt, Qpgt4+1 = Ai41, An42 = Ap42 | Hn,l =h, Dn,t =d, Dn,t+1 =d, Dn,t+2 =d, e, = 6)

is identified for each (a;, asy 1, as o) € A®if:
(i) Assumption[I]holds.

(ii) The wage mixture weights in (I9)) are identified at times ¢ + 2 and ¢ + 3. See Proposition {] for

sufficient conditions.

(iii) Pr(H,1 =h, Dy =d, Dpyi1 =d, Dyyyo =d) > 0and Pr(e, = e | Hy1 = h, Dy =
d, Dypys1 =d, Dy = d) > 0, where the first condition can be verified from the data and

the second from the identification of £$" ., under Proposition iii) for each d'*? € D2,

By Corollary 2]
Pr(aml =a|H,y=h, Dyy=d, e, = e)
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is identified for each a € A if:
(i) Assumption [I|holds.

(ii) The wage mixture weights in (I9) are identified at times 1 and 2. See Proposition [4] for suffi-

cient conditions.

(iii) Pr(H,1 = h, Dy1 =d) > 0and Pr(e, = ¢ | H,y = h, D,1 = d) > 0, where the first
condition can be verified from the data and the second from the identification of £§"; under
Proposition Aiii).

O
Proof of Proposition Let2 <t<T,s:=(hk,pe) €S,deD,and 35 = (h,i&,p,é) € S
such that Pr(D,,; = d, s,,;—1 = §) > 0. We have

Pr(sn,t =S | Dn,t—l = d7 Snt—1 = §)
= Pr(Hn,l = h7 Kpt = K,€p = € | Dn,tfl = d7 Hn,l = h7 Rnt—1 = ’%7 Pn,tfl = ﬁv €n = é)

X Pr(Pn,t =p | Dn,tfl = d7 Hn,l = il; Rpt—1 = /%7 Pn,tfl = ﬁ? €n = é)
For (h,e) # (h, &), Pr(sp+=s| Dypi—1 =d,sp4—1 =5) = 0. For (h,e) = (l~z, é),

Pr(s,:=s|Dypi1=4d, Sp—1 =3)
= Pr(knt =K | Dnt—1 =d,knt—1 = R) (109)
X Pr(Pyt=p| Dnt-1=d,Hy1 =h,Pri1 =D,e, =e).
In (I09), Pr(knt = & | Dpt—1 = d,knt—1 = K) is known because «,,; is a known function
of D!" and k1 is a known function of D} 2. From equation (3), p can take two values, {7, p},

depending on whether a,,;_ 1 = a or a,;—1 = a. Therefore, Pr(P,; = p | Dyt = d, H,1 =

h, P, 1 =p,e, =e)in (109) can be

Pr(P,t=p|Dnt1=d,Hy1 =h,Poi1=D,en =€) =Pr(aps1 =a| Dpy1 =d, Hy1 = h,e, =e),
or

Pr(P,; = p | Dpt-1=d,Hp1 =h,Pyi1 =p,e,=¢)=Pr(ap,1=a|Dyps1=d,H,1 =h,e, =e).

Moreover, Pr(a, -1 = a | Dp4—1 = d, H,1 = h,e, = e) is identified by Proposition lé—_lki) at times ¢

and t — 1; see Step (a) below. Therefore, Pr(s,: = s | D1 = d, S,—1 = §) is identified.
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Step (a): Useful to Identify the Law of Motion of the State. In this step, we identify the conditional

signal distribution

Pr(am =a|Hy1=h, Dyy=d,e, = e), (110)

foreach1 <t < T —1and (a,h,d,e) € Ax H x D x & such that Pr(H,1 = h, Dy, =d) >0
and Pr(e, = e | Hy1 = h, Dy, =d) > 0.

Proof. By Proposition[d|i) at time ¢ 4 1 and ¢,
Pr(al, = (" ',a) | Hoy = h, D, = (d'" ', d), e, = e), (111)

is identified for each (e,a’"' a,h,d""',d) € € x A* x H x D' such that Pr(H,; = h,D! =
(d=1,d)) > 0 and Pr(e, = e | H,1 = h, D!, = (d""',d)) > 0, where d"' := (dy,...,d;_1) and
a7 = (ay,...,a;_1). See Corollary

Moreover,

Pr(D! = (d',d) | Hy1 = h,e, =¢) (112)

is identified for each (d"~!,d, h,e) € D' x H x & such that Pr(H,,; = h | D!, = (d"!,d)) > 0 and
Pr(e, = e | Hy1 = h, D! = (d"*,d)) > 0. This is because

Pr(D! = (d"",d) | Hyy = h,e, =€)
S Pr(e, =e,at =a™' | Hyy = h, DY = (d"',d)) x Pr(D!, = (d""',d) | Hyp = h)
Zdl Pr(e, = ¢ | Hy,1=h,Dy1 =dy) x Pr(Dy1 =d | H,, = h) 7

where:

Pr(e, = e,al, ' =a'"' | H,y = h,D!, = (d""!,d)) is identified from Proposition[d]i) at time
t foreach (e,a'™! h,d"" !, d) € Ex A" xHx D! such that Pr(H,, = h, D!, = (d'"',d)) > 0.

e Pr(D! = (d"*,d) | H,1 = h) is known from the data for each (d'~',d, h) € D' x H.

Pr(D, 1 = dy | H,1 = h) is known from the data for each (d;,h) € D x H.

Pr(e, =e | Hy,1 = h, D,,1 = d;) is identified from Proposition Elki) applied to the first period
for each (e, h,dy) € € x H x D such that Pr(H,; = h, D, ; = d;) > 0.

From (112)),
Pr(Dns=d| Hyy = h,e, =e) (113)
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is identified for each (d, h,e) € D x H x & such that Pr(H,,y = h | D, = d) > 0 and Pr(e, = ¢
Hypy=h,Dpy=d) > 0.

Using the law of total probability, for each a € A,

Pr(an: =a | Dy = d, Hn,1 =h,e, =e)
=> > Pr(a, = va) | Hyy = h, D! = (d'7',d),e, =€) x Pr(D!, = (d'"',d) | Hpy = h,e, =¢)

dt—1 gt—1

/Pr(Dm —d|Hyy = hyen =e).

(114)

Therefore, the conditional probability in (T10) is identified by (ITT]) to (TT4]. O
Proof of Proposition[§} Let 2 <t < T'. The conditional probability

Pr(Dy; =d| Hyy =h, D' =d™ e, =e,a ' =a), (115)

is identified for each (d, h,d' ', e,a'™') € Dx H x D" ' x & x A"~ ! such that Pr(H,,; = h, D5t =
d™') > 0and Pr(e, = e,a; ' =a"' | H,; = h, D"t = d™Y) > 0, where d! = (dy,...,d;i_1)

and a'~! := (ay,...,a;_1). This is because, by Bayes’ rule,
Pr(D,;=d| H,y =h,Di' =d e, =e,a ' =a™)

t—
Pr(e, =e,al ' =a'"' | Hyy = h, D!, = (d""1,d)) Pr(D, =d | Hyy = h, D7t =d'=1)
Pr(e, =e,al7' =at~' | Hyy = h, DIt = dt-1) ’

where:

* Pr(e, = e,a;' =a'' | Hyy = h, D!, = (d'™!,d)) is identified by Proposition {{i) at time ¢

’'n

foreach (e,a’™', h,d"™! d) € Ex A x H x D" such that Pr(H,,; = h, D!, = (d'*,d)) > 0.

 Pr(D,; = d | H,; = h,Di"" = d'') is known from the data for each (d,h,d"™!) €
D x H x D! such that Pr(H, 1 = h, D} = d'™1) > 0.

e Pr(e, = e,a! = o' | H,y = h,Di7' = d'7') is identified, as shown in (T00), from
Proposition[4{i) at time ¢ for each (h,d'~!, e,a’™!) € H x D' xE x A*~! such that Pr(H,, ; =
h, DI-1 = dt=1) > 0,

The joint distribution

Pr(H,, =h,Di' =d" e, =ea !t =a't), (116)
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is identified from Proposition[4{i) at time ¢ for each (h, d'~!, e, a'™!) € H xD'"1 x € x A"~ such that
Pr(H,1 = h, DI = d"=') > 0. Given (T13), (T16)), and knowledge of the map g; from realisations

of (H, 1, D! e, al7) to realisations of s,, ;, we identify
Pr(Dn;: =d| spt =),

foralld € Dand s € ;.
For t = 1, the same steps apply, with the obvious modification that D, ; ; and a, —; are not

present in the derivations.

O
Proof of Proposition@. Let 2 <t < T'. From Proposition ii) at time ¢, we identify
Pr(wnyt <w|H,y=h, DI =d', e,=¢,a'= atfl), (117)
for each (h,d',e,a’™') € H x D' x & x A"! such that Pr(H,,; = h, D! =d') > 0 and Pr(e, =
e, ab-! = a' | H,y = h, D! = d') > 0, where d' == (dy,...,d;) = (d""',d;) and @' =
(al, e ,Cl,t_l).
From Proposition [4{i) at time ¢, we identify
Pr(HnJ =h, D! =d' e,=e, a'= atfl), (118)
for each (h,d",e,a'™') € H x D' x £ x A""! such that Pr(H,,; = h, D!, =d") > 0.
From Proposition[4{i) at time ¢, we identify
Pr(H,1=h, D' =d"" e, =€, a ' =a"), (119)

for each (h,d" ! e,a"™ ") € H x D! x £ x A™! such that Pr(H,,; = h, Di7' = d'=1) > 0.
By taking the ratio between and (119), we identify
Pr(Dn,t =d;|Hyy=h, Di'=d" ' e, =e, a ' = at_l)

_ Pr(Hn,i=h, D, =d e, =e, a;' =a"") (120)
~ Pr(H,,=h, DIl =di=1, e, = e, al~! = a'~1)’

for each (h,d',e,a’™') € H x D! x & x A"! such that Pr(H,,; = h, D! =d') > 0 and Pr(e,, =
e, a"t =a""V | H,; =h, DIt =d'"1) > 0.

Letd € Dand s € S; such that Pr(D,,; = d | s, = s) > 0. Using Bayes’ rule, for each w € R,
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we can write

Pr(w,; <w | Dpy =d, spt = s)

= > Pr(wp; <w| Hyy =h, Dt =d™Y D,y =d e, =e a7t =a'™h)

(h,d*=1e,at=1):
gl e a1 )= (121)

Pr(H,1=h,Di' =d" ' D, =d,e, =e,a ! =a'1)
Z Pr(Hny=h, D' =d™ " Dy =d,e, =e,a" = a'™)

(h,dt= L e,at=1):
g(h,d™ 1 e,at")=s

X

All the components on the right-hand side of (I121]) are identified by to (I20). Therefore,
Pr(w,; <w | Dypy =d, s,: = s) is identified.

Lastly, we use Assumptionto identify Pr(w,; < w | Dpy = d, D, , = d', s,; = s) from
Pr(w,; < w | D,y = d, s, = s). Indeed, under Assumption i), conditioning on D,,; =
and s, ; = s also implicitly conditions on the second-best firm D), , entering the wage equation (8).
Moreover, by Assumption ii), we know which firm is D;, ;. Therefore, we identify Pr(w,; < w |
Dypy=d, D), =d, s,;=5).

For t = 1, the same steps apply, with the obvious modification that a,; ; and D! are not
present in the derivations.

The identification of Pr(D,,; = d | D,,; = d’, s, = s) follows directly from Propositionand
Assumption [2] O

E Details on Monte Carlo Simulation

E.1 Simulation Exercise

Here we describe the implementation of the exercise in Section Data are generated by tracking
1,000,000 workers over 30 periods (from age 25 to 55). Upon entering the labor market, each
worker is assigned an efficiency type e from K possible values. To assign these values, the interval
[—207, 201] is divided into K; — 1 equal subintervals, with grid points {ay, . .., ak, } (with o; > 0).
For each worker, a number is drawn from the Normal distribution A/(0, 0y); if the number falls
within the interval [a;_1, a;], the worker is assigned efficiency type a;; if the number falls below
ay, the worker is assigned efficiency type a;; and if the number falls above ag,, the worker is
assigned type ax,. Workers are also assigned gender, education level, and age. In addition, each

worker is given an ability type 6,, from two possible levels: high ability  and low ability . The
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simulation includes 200 firms. Each firm is assigned a productivity type from K5 possible values,
determined by drawing from a Normal distribution N (0, 03) in a manner similar to that for workers.
The set D now denotes the collection of labels for the firm productivity types (as opposed to firm
identities in the original model), where a generic label d € D is associated with the productivity type
Bo(d) € {b1,...,bk,—1}. Note that Bonhomme et al. (2019) also considers economies with a finite
number of worker and firm types.

To generate mobility in the economy, for each worker in each period a draw is made from a
Bernoulli distribution with parameter p. If the draw equals 1, an additional number is drawn from a
Normal distribution NV(e X 1, 05) to determine the type of firm the worker moves to, where p > 0
and e is the worker efficiency type. The parameter p significantly influences sorting; when p is high,
workers with high efficiency tend to match with firms having high productivity.

Finally, beliefs are generated from a uniformly distributed prior and updated via Bayes’ rule by
drawing high and low signals in each period, with high signals being more likely for workers with
high ability # and low signals more likely for those with low ability 6.

The components of the wage equation (21)) are specified as

Bi(d, e)Hp1 = Proexp(e)edu_high, + 511 exp(e)gender,,
Ba(d, €)kns = Paoexp(e) + P21 exp(e)age,, + [a2 exp(e)agei,
63(d7 e)P’mt = /83 exp(e)Pn,ta

where edu_high  and gender,, are education (college/noncollege) and gender dummies, and

\IJ(Hn,la Kty Pt U(d,e)) = ¢1,1(d)agei + ¢1,2(d)agei + ¢2,2(d)(Pn,t)2 + wQ,S(d)(Pn,t)?)
+ Vo4 (d) (Poy)* + ¥3,1(d)(Pry) age + 13.2(d) (Poy) ages + ts,3(d)(Pay) age) + ¢sa(d)(Po,) age,
+ a1 (d)(P2,) age + huo(d)(P7,) agel + vy 3(d) (P2 ,) aged + ¢a(d)(P2,) age),

+ 5,1 (d) (Po) edu_high,, + 55(d)(Py,) edu_high,, + ¢53(d)(P,,) edu_high,, +15.4(d)(P,,) edu_high,,,

with 1; ;(d) =1, j exp(By(d)). The moments from PSID that discipline simulation parameters are:
* the variance, skewness, and kurtosis of log-earnings;
* the variance of log-earnings at three ages:30, 50, and 65 years old;

* the variance of log earning within cells defined by age-gender-education groups. Age groups

are S-year groups for a total of 30 cells;
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* the variance of two-years log-earnings growth;

the growth of average log earnings between 30 and 50 years old;

the growth of average log earnings between 50 and 65 years old;

the college premium;

the gender gap.

We also include the share of the variance accounted for by the worker effect, firm effect, and their
covariance, based on the AKM estimates from [Song et al.| (2019), that is, the share of log earnings
variance accounted for by workers fixed effects, the share accounted for by firm fixed effects, and

the share accounted for the covariance term (sorting).
E.2 Monte Carlo Simulation

In this Section, we describe a few details of the simulation in Section We also describe the data

we use to calibrate the simulated economy.

The Data. To calibrate the economy to match key moments of the distribution of labor earnings in
the US economy, we draw information from the Panel Study of Income Dynamics (PSID). The PSID
is a multi-generational, household-level panel dataset that began in 1968 and tracks the same indi-
viduals and their lineal descendants across time. The survey provides annual observations between
1968 and 1996, and is biennial thereafter. The original study comprised about 5,000 households
(families), and the study currently tracks over 9,000 households. The PSID provides detailed micro-
data on various income sources (e.g., labor earnings, self-employment income), net worth/wealth,
labor force participation, consumption/expenditures, and other factors. Additionally, the PSID col-
lects information on the age, education level, occupation, and industry of the respondent (typically
the head of the household).

From this dataset, we select observations of employed heads of household who are between 22
and 65 years old, have positive labor earnings in a particular period, and belong to the core PSID
sample. Using this sample, we calculate the share of labor earnings within brackets of the income
distribution, and the age profile of the mean and the standard deviation of labor earnings. To calculate
the average labor income profile, we regress log labor earnings on a quartic polynomial in age and
include year fixed effects. For the standard deviation, we calculate the cross-sectional standard

deviation of log labor earnings.
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F Details on Empirical Application

We describe how we construct workers’ variable pay and compute P, ;. First, given a firm & and
quarter ¢, we select individuals working full-time at firm £ if their earnings exceed the full-time min-
imum wage for the quarter, i.e., 12 X 5 X 8 X w, where w is the federal minimum wage (approximately
3,500 USD). For these individuals, we retain only those who remain at firm % for at least 6 quarters.

Second, we define the fraction of variable pay as follows:

* For each worker n in the selected sample, we compute a 5-quarter moving average centered

on quarter ¢ (i.e., two quarters before and two quarters after ¢). Denote this average by wy, , .

* For each quarter ¢, we calculate 7, ; = Wk g — Wk nq, Where wy, ,, 4 1s the observed wage of

worker n in quarter ¢ at firm k.
* We identify a positive jump, denoted by 7}, ¢ = Tkn,g- if the following conditions are met:

= Tking/Wkng > 0.1 (i.e., the jump is at least 10% of the moving average income),

= |"kng—1/Wkngl < 0.1 and |7y g+1/Wknql < 0.1 (ensuring the jump is isolated rather

than part of a permanent increase).
* A negative jump 7, . is identified similarly.
Third, we define three objects:

* Annual wage: wy,1q = Y, D}, Wkn,q, Where dis the firm among the jobs k held by the worker

that provided the highest wage in that year.
* Positive variable pay: 7, ; = >0 > 10

* Negative variable pay: v, , ;= > D 1 Tt no-

+
rn,t,d
W, t,d ’

Given these three objects, we define the fraction of variable pay over total income as p, ; g =
considering only the positive jumps. This yields a distribution of p,,; 4 for each year ¢ and firm d
across all workers. In turn, a worker is assigned a positive performance signal (equal to 1) if they are
in the top quartile of the p,; 4 distribution within a year; all other workers receive a signal of zero.
Finally, P, ; is generated using a uniform prior and updated via Bayes’ rule using the signals derived

from the p,, ; 4 distribution.
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